UVA - 10004 - Bicoloring(染色问题)

该问题探讨的是如何判断一个给定的连通、无环无向图是否能够使用两种颜色进行染色,使得相邻节点颜色不同。输入包含多个测试用例,每个用例给出节点数和边数,以及连接节点的边信息。如果图可以被成功地用两种颜色染色,则输出"BICOLORABLE.",否则输出"NOT BICOLORABLE."。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UVA - 10004 - Bicoloring

Time Limit: 3000ms     Memory Limit: 131072KB

In 1976 the “Four Color Map Theorem” was proven with the assistance of a computer. This theorem states that every map can be colored using only four colors, in such a way that no region is colored using the same color as a neighbor region.
Here you are asked to solve a simpler similar problem. You have to decide whether a given arbitrary connected graph can be bicolored. That is, if one can assign colors (from a palette of two) to the nodes in such a way that no two adjacent nodes have the same color. To simplify the problem you can assume:

no node will have an edge to itself.
the graph is nondirected. That is, if a node a is said to be connected to a node b, then you must assume that b is connected to a.
the graph will be strongly connected. That is, there will be at least one path from any node to any other node.

Input

The input consists of several test cases. Each test case starts with a line containing the number n ( 1 < n < 200) of different nodes. The second line contains the number of edges l. After this, l lines will follow, each containing two numbers that specify an edge between the two nodes that they represent. A node in the graph will be labeled using a number a ( 0a<n).
An input with n = 0 will mark the end of the input and is not to be processed.

Output

You have to decide whether the input graph can be bicolored or not, and print it as shown below.

Sample Input

3
3
0 1
1 2
2 0
9
8
0 1
0 2
0 3
0 4
0 5
0 6
0 7
0 8
0

Sample Output

NOT BICOLORABLE.
BICOLORABLE.


题意:给你一个连通、无环无向图,让你给用两个颜色给每个节点染色,两个相邻节点不能染同样的颜色,问能否成功染色


#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define MAXN 210
using namespace std;

queue<int> q;

int mp[210][210], vis[210], co[210];

bool bfs()
{
    vis[0] = 1;
    co[0] = 1;
    queue<int> q;
    q.push(0);
    while(!q.empty())
    {
        int n = q.front();
        q.pop();
        for(int i = 0; i < MAXN; i++){
            if(mp[n][i]){
                if(!vis[i]){
                    vis[i] = 1;
                    if(co[n] == 1)
                        co[i] = 2;
                    else
                        co[i] = 1; 
                    q.push(i);
                }
                else if (co[i] == co[n]){    //相邻两个节点染的颜色相同
                    return false;   
                }
            }
        }
    }
    return true;
}

int main()
{
    int n, m;
    while(scanf("%d", &n)!=EOF && n){
        scanf("%d", &m);

        memset(mp, 0, sizeof(mp));
        memset(vis, 0, sizeof(vis));
        memset(co, 0, sizeof(co));

        for(int i = 0; i < m; i++){
            int a, b;
            scanf("%d %d", &a, &b);
            mp[a][b] = mp[b][a] = 1;
        }

        bool flag = bfs();

        if(flag)
            printf("BICOLORABLE.\n");
        else
            printf("NOT BICOLORABLE.\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值