Spark SQL 1.x之Hive Context

SparkSQL与HiveContext集成
本文介绍如何在SparkSQL中集成HiveContext,包括配置HiveSite、添加Hive依赖、使用HiveContext处理Hive中的数据。通过具体代码示例展示了如何读取Hive表并显示数据。

使用SparkSQL时,并不需要搭建一个Hive,只需要一个HiveSite就可以

添加Hive配置文件

将Hive中的hive-site.xml复制到spark中的conf文件夹下。

添加依赖

在pom.xml文件中添加HiveContext的依赖:

    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-hive_2.11</artifactId>
      <version>${spark.version}</version>
    </dependency>

Hive中的数据

在这里插入图片描述

相关代码

package cn.ac.iie.spark

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.hive.HiveContext

/**
 * HiveContext的使用
 * 使用时需要通过 --jars 把mysql的驱动传递到classpath
 */
object HiveContextApp {
  def main(args: Array[String]): Unit = {
    // 1. 创建相应的Context
    val sparkConf= new SparkConf()
    // 在生产或测试环境中,APPName和Master是通过脚本指定的
    sparkConf.setAppName("HiveContextApp")
    sparkConf.setMaster("local[2]")
    val sc = new SparkContext(sparkConf)
    val hiveContext = new HiveContext(sc)

    // 2. 相关处理:json
    hiveContext.table("sal").show()
    // 3. 关闭资源
    sc.stop()
  }
}

使用Maven进行打包:mvn clean package -DskipTests

测试运行

运行前需要添加mysql的JDBC Driver,因此添加一个Driver:mysql-connector-java-5.1.35.jar
运行命令:spark-submit --class cn.ac.iie.spark.HiveContextApp --jars /home/iie4bu/software/mysql-connector-java-5.1.35.jar --master local[2] /home/iie4bu/lib/sql-1.0-SNAPSHOT.jar
控制台输出结果:
在这里插入图片描述

WARN metastore.RetryingMetaStoreClient: MetaStoreClient lost connection. Attempting to reconnect. org.apache.thrift.transport.TTransportException: Cannot write to null outputStream at org.apache.thrift.transport.TIOStreamTransport.write(TIOStreamTransport.java:142) at org.apache.thrift.protocol.TBinaryProtocol.writeI32(TBinaryProtocol.java:178) at org.apache.thrift.protocol.TBinaryProtocol.writeMessageBegin(TBinaryProtocol.java:106) at org.apache.thrift.TServiceClient.sendBase(TServiceClient.java:70) at org.apache.thrift.TServiceClient.sendBase(TServiceClient.java:62) at org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$Client.send_add_partition_with_environment_context(ThriftHiveMetastore.java:1683) at org.apache.hadoop.hive.metastore.api.ThriftHiveMetastore$Client.add_partition_with_environment_context(ThriftHiveMetastore.java:1674) at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.add_partition(HiveMetaStoreClient.java:661) at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.add_partition(HiveMetaStoreClient.java:655) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.invoke(RetryingMetaStoreClient.java:154) at com.sun.proxy.$Proxy40.add_partition(Unknown Source) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.hadoop.hive.metastore.HiveMetaStoreClient$SynchronizedHandler.invoke(HiveMetaStoreClient.java:2562) at com.sun.proxy.$Proxy40.add_partition(Unknown Source) at org.apache.hadoop.hive.metastore.SynchronizedMetaStoreClient.add_partition(SynchronizedMetaStoreClient.java:69) at org.apache.hadoop.hive.ql.metadata.Hive.addPartitionToMetastore(Hive.java:1676) at org.apache.hadoop.hive.ql.metadata.Hive.loadPartition(Hive.java:1529) at org.apache.hadoop.hive.ql.metadata.Hive.loadPartition(Hive.java:1489) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.sql.hive.client.Shim_v2_1.loadPartition(HiveShim.scala:1146) at org.apache.spark.sql.hive.client.HiveClientImpl$$anonfun$loadPartition$1.apply$mcV$sp(HiveClientImpl.scala:772) at org.apache.spark.sql.hive.client.HiveClientImpl$$anonfun$loadPartition$1.apply(HiveClientImpl.scala:770) at org.apache.spark.sql.hive.client.HiveClientImpl$$anonfun$loadPartition$1.apply(HiveClientImpl.scala:770) at org.apache.spark.sql.hive.client.HiveClientImpl$$anonfun$withHiveState$1.apply(HiveClientImpl.scala:283) at org.apache.spark.sql.hive.client.HiveClientImpl.liftedTree1$1(HiveClientImpl.scala:221) at org.apache.spark.sql.hive.client.HiveClientImpl.retryLocked(HiveClientImpl.scala:220) at org.apache.spark.sql.hive.client.HiveClientImpl.withHiveState(HiveClientImpl.scala:266) at org.apache.spark.sql.hive.client.HiveClientImpl.loadPartition(HiveClientImpl.scala:770) at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$loadPartition$1.apply$mcV$sp(HiveExternalCatalog.scala:908) at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$loadPartition$1.apply(HiveExternalCatalog.scala:896) at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$loadPartition$1.apply(HiveExternalCatalog.scala:896) at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:99) at org.apache.spark.sql.hive.HiveExternalCatalog.loadPartition(HiveExternalCatalog.scala:896) at org.apache.spark.sql.catalyst.catalog.ExternalCatalogWithListener.loadPartition(ExternalCatalogWithListener.scala:178) at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.processInsert(InsertIntoHiveTable.scala:248) at org.apache.spark.sql.hive.execution.InsertIntoHiveTable.run(InsertIntoHiveTable.scala:99) at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:104) at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:102) at org.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:115) at org.apache.spark.sql.Dataset$$anonfun$6.apply(Dataset.scala:194) at org.apache.spark.sql.Dataset$$anonfun$6.apply(Dataset.scala:194) at org.apache.spark.sql.Dataset$$anonfun$53.apply(Dataset.scala:3364) at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78) at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73) at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3363) at org.apache.spark.sql.Dataset.<init>(Dataset.scala:194) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:79) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:651) at com.ilotterytech.ocean.bdp.spark.finance.SyncLotterySalesInfo$.saveSyncRecords(SyncLotterySalesInfo.scala:710) at com.ilotterytech.ocean.bdp.spark.finance.FinanceCommon$class.main(FinanceCommon.scala:201) at com.ilotterytech.ocean.bdp.spark.finance.SyncLotterySalesInfo$.main(SyncLotterySalesInfo.scala:39) at com.ilotterytech.ocean.bdp.spark.finance.SyncLotterySalesInfo.main(SyncLotterySalesInfo.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52) at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:851) at org.apache.spark.deploy.SparkSubmit.doRunMain$1(SparkSubmit.scala:167) at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:195) at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:86) at org.apache.spark.deploy.SparkSubmit$$anon$2.doSubmit(SparkSubmit.scala:926) at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:935) at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
最新发布
05-20
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值