题目描述
有一个 m×n 格的迷宫(表示有 m 行、n 列),其中有可走的也有不可走的,如果用 1 表示可以走,
0 表示不可以走,文件读入这 m×n 个数据和起始点、结束点(起始点和结束点都是用两个数据来描述的,分别表示这个点的行号和列号)。现在要你编程找出所有可行的道路,要求所走的路中没有重复的点,走时只能是上下左右四个方向。如果一条路都不可行,则输出相应信息(用 −1 表示无路)。
优先顺序:左上右下。数据保证随机生成。
输入格式
第一行是两个数 m,n(1<m,n<15),接下来是 m 行 n 列由 1 和 0 组成的数据,最后两行是起始点和结束点。
输出格式
所有可行的路径,描述一个点时用 (x,y) 的形式,除开始点外,其他的都要用 ->
表示方向。
如果没有一条可行的路则输出 −1。
输入输出样例
输入 #1复制
5 6 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 5 6
输出 #1复制
(1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6) (1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6) (1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6) (1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6) (1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6) (1,1)->(2,1)->(2,2)->(2,3)->(2,4)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6) (1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6) (1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6) (1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(3,4)->(4,4)->(4,5)->(5,5)->(5,6) (1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(2,4)->(2,5)->(3,5)->(4,5)->(5,5)->(5,6) (1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(3,4)->(3,5)->(4,5)->(5,5)->(5,6) (1,1)->(2,1)->(2,2)->(2,3)->(3,3)->(4,3)->(4,4)->(4,5)->(5,5)->(5,6)
说明/提示
数据保证随机生成。事实上,如果 n=m=14 且每个位置都是 1 的话,有 69450664761521361664274701548907358996488种路径。
#include <algorithm>
#include <iostream>
#include <cstring>
#include <string>
#include <utility>
#include <cmath>
#include <queue>
using namespace std;
int dx[4] = {0,-1,0,1};
int dy[4] = {-1,0,1,0};
int dt[16][16];
bool vis[16][16], flag;
int m, n, st_x, st_y, ed_x, ed_y;
const string s[16] = {"0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15"};
void dfs(int x, int y, string ans);
int main()
{
cin >> m >> n;
for (int i=1; i<=m; i++)
{
for (int j=1; j<=n; j++)
{
cin >> dt[i][j];
}
}
cin >> st_x >> st_y >> ed_x >> ed_y;
// for (int i=1; i<=m; i++)
// {
// for (int j=1; j<=n; j++)
// {
// cout << dt[i][j] << ' ';
// }
// cout << endl;
// }
vis[st_x][st_y] = 1;
dfs(st_x,st_y,"("+s[st_x]+","+s[st_y]+")");
if (flag==0) cout << -1 << endl;
return 0;
}
void dfs(int x, int y, string ans)
{
if (x==ed_x && y==ed_y)
{
cout << ans << endl;
flag = 1;
}
vis[x][y] = 1;
for (int i=0; i<4; i++)
{
int xx = x + dx[i];
int yy = y + dy[i];
if (xx<1 || yy<1 || xx>m || yy>n) continue;
if (dt[xx][yy]==1 && vis[xx][yy]==0)
{
vis[xx][yy] = vis[xx][yy]+1;
dfs(xx,yy,ans+"->"+"("+s[xx]+","+s[yy]+")");
vis[xx][yy] = 0;
}
}
}