本人项目地址大全:Victor94-king/NLP__ManVictor: 优快云 of ManVictor
写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!
写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!
写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!
在实际工作中,经常有人问,7B、14B或70B的模型需要多大的显存才能推理?如果微调他们又需要多大的显存呢?为了回答这个问题整理一份训练或推理需要显存的计算方式。如果大家对具体细节不感兴趣,可以直接参考经验法则评估推理或训练所需要的资源。更简单的方式可以通过这个工具或者huggface官网计算推理/训练需要的显存工具在线评估。
数据精度
开始介绍之前,先说一个重要的概念——数据精度。数据精度指的是信息表示的精细程度,在计算机中是由数据类型和其位数决定的。如果想要计算显存,从“原子”层面来看,就需要知道我们的使用数据的精度,因为精度代表了数据存储的方式,决定了一个数据占多少bit。 目前,精度主要有以下几种:
- 4 Bytes: FP32 / float32 / 32-bit
- 2 Bytes: FP16 / float16 / bfloat16 / 16-bit
- 1 Byte: int8 / 8-bit
- 0.5 Bytes: int4 / 4-bi