自然语言处理:第五十章 第一个开源MOE大模型

  • 论文地址:https://arxiv.org/pdf/2409.02060
  • 论文标题:OLMoE: Open Mixture-of-Experts Language Models


写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!

写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!

写在前面: 笔者更新不易,希望走过路过点个关注和赞,笔芯!!!

尽管大语言模型 (LM) 在各种任务上取得了重大进展,但在训练和推理方面,性能和成本之间仍然需要权衡。

对于许多学者和开发人员来说,高性能的 LM 是无法访问的,因为它们的构建和部署成本过高。改善成本 - 性能的一种方法是使用稀疏激活混合专家 (MoE)。MoE 在每一层都有几个专家,每次只激活其中的一个子集(参见图 2)。这使得 MoE 比具有相似参数量的密集模型更有效,因为密集模型为每个输入激活所有参数。

图片

出于这个原因,行业前沿模型包括 Gemini-1.5、 GPT-4 等在内的模型都使用了 MoE。

然而,大多数 MoE 模型都是闭源的,虽然有些模型公开发布了模型权重,但有关训练数据、代码等的信息却很有限,甚至有些研究没有提供这些信息。由于缺乏开放资源和对研究细节的深入探索,在 MoE 领域无法构建具有成本效益的开源模型,从而接近闭源前沿模型的能力。

为了解决这些问题,来自艾伦人工智能研究院、 Contextual AI 等机构的研究者引入了 OLMoE ,这是一个完全开源的混合专家语言模型,在类似大小的模型中具有 SOTA 性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曼城周杰伦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值