Storm整合Redis WordCount

本文介绍如何使用Apache Storm进行实时数据流处理,并利用Redis存储处理结果。通过具体示例,包括SentenceSpout数据源、SplitSentenceBolt数据拆分、WordCountBolt词频统计及WriteRedisBolt结果存储,展示了一个完整的实时计算流程。

使用Redis将最终Bolt的结果存储起来。

引入storm-redis依赖,继承AbstractRedisBolt。

1. pom.xml

在这里插入图片描述

<dependency>
  <groupId>org.apache.storm</groupId>
  <artifactId>storm-redis</artifactId>
  <version>2.1.0</version>
</dependency>

<dependency>
  <groupId>org.apache.storm</groupId>
  <artifactId>storm-core</artifactId>
  <version>2.1.0</version>
</dependency>

<dependency>
  <groupId>org.projectlombok</groupId>
  <artifactId>lombok</artifactId>
  <version>1.18.12</version>
</dependency>
2. SentenceSpout
import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Values;

import java.util.Arrays;
import java.util.List;
import java.util.Map;


public class SentenceSpout extends BaseRichSpout {

    private SpoutOutputCollector collector;

    private List<String> sentenceList = Arrays.asList(
            "Hadoop,Storm,Hive,HBase",
            "Storm,HBase,Storm"
    );

    private Integer index = 0;


    @Override
    public void open(Map<String, Object> conf, TopologyContext context, SpoutOutputCollector collector) {
        this.collector = collector;
    }

    /**
     * Storm将会循环调用该方法
     */
    @Override
    public void nextTuple() {
        if (index < sentenceList.size()) {
            final String sentence = sentenceList.get(index);
            // 发射时需要指定 消息id
            collector.emit(new Values(sentence), index);
            index++;
        }
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("sentence"));
    }
}
3. SplitSentenceBolt
/**
 * 将句子分隔成单词
 */
@Slf4j
public class SplitSentenceBolt extends BaseRichBolt {
    private OutputCollector collector;

    @Override
    public void prepare(Map<String, Object> topoConf, TopologyContext context, OutputCollector collector) {
        this.collector = collector;
    }

    @Override
    public void execute(Tuple input) {
       try {
           String sentence = input.getStringByField("sentence");
           String[] words = sentence.split(",");

           // 将每个单词流向到下一个Bolt
           for (String word : words) {
               // 发射时携带发射过来的input
               collector.emit(input, new Values(word));
           }

           // 处理成功了给当前tuple做一个成功的标记,调用上游的ack方法
           collector.ack(input);
       } catch (Exception e) {
           log.error("SplitSentenceBolt#execute exception", e);
           // 异常做一个失败的标记,调用上游的fail方法
           collector.fail(input);
       }
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("word"));
    }
}
4. WordCountBolt
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;

import java.util.HashMap;
import java.util.Map;

public class WordCountBolt extends BaseRichBolt {
    private OutputCollector collector;
    private Map<String, Long> wordCountMap = null;


    /**
     * 大部分示例变量通常在prepare中进行实例化
     * @param topoConf
     * @param context
     * @param collector
     */
    @Override
    public void prepare(Map<String, Object> topoConf, TopologyContext context, OutputCollector collector) {
        this.collector = collector;
        this.wordCountMap = new HashMap<>();
    }

    @Override
    public void execute(Tuple input) {
        String word = input.getStringByField("word");
        Long count = wordCountMap.get(word);
        if (count == null) {
            count = 0L;
        }
        count++;
        wordCountMap.put(word, count);

        collector.emit(new Values(word, count));
        collector.ack(input);
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("word", "count"));
    }
}
5. WriteRedisBolt
import org.apache.storm.redis.bolt.AbstractRedisBolt;
import org.apache.storm.redis.common.config.JedisPoolConfig;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.BasicOutputCollector;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseBasicBolt;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Tuple;
import redis.clients.jedis.JedisCommands;

import java.util.HashMap;
import java.util.Map;

public class WriteRedisBolt extends AbstractRedisBolt {

    public WriteRedisBolt(JedisPoolConfig config) {
        super(config);
    }


    @Override
    protected void process(Tuple tuple) {
        String word = tuple.getStringByField("word");
        Long count = tuple.getLongByField("count");

        JedisCommands jedisCommands = getInstance();
        jedisCommands.hset("wordcount", word, count.toString());
    }

    @Override
    public void declareOutputFields(OutputFieldsDeclarer declarer) {

    }
}
6. WordCountTopology
import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.generated.StormTopology;
import org.apache.storm.redis.common.config.JedisPoolConfig;
import org.apache.storm.topology.TopologyBuilder;
import org.example.redis.bolt.SplitSentenceBolt;
import org.example.redis.bolt.WordCountBolt;
import org.example.redis.bolt.WriteRedisBolt;
import org.example.redis.spout.SentenceSpout;

public class WordCountTopology {
    public static void main(String[] args) throws Exception {
        // Redis配置
        JedisPoolConfig jedisPoolConfig = new JedisPoolConfig.Builder()
                .setHost("127.0.0.1")
                .setPort(6379)
                .setPassword("123456")
                .setTimeout(3000)
                .build();

        TopologyBuilder builder = new TopologyBuilder();
        builder.setSpout("spout", new SentenceSpout(), 1);
        builder.setBolt("split-bolt", new SplitSentenceBolt()).shuffleGrouping("spout");
        builder.setBolt("word-count-bolt", new WordCountBolt()).shuffleGrouping("split-bolt");
        builder.setBolt("write-redis-bolt", new WriteRedisBolt(jedisPoolConfig)).globalGrouping("word-count-bolt");
        StormTopology topology = builder.createTopology();

        // 提交拓扑
        Config config = new Config();
        config.setDebug(true);
        if (args == null || args.length == 0) {
            // 本地模式
            config.setDebug(true);
            LocalCluster cluster = new LocalCluster();
            cluster.submitTopology("WordCountTopology", config, topology);
        } else {
            // 集群模式
            config.setNumWorkers(2);
            StormSubmitter.submitTopology(args[0],config,builder.createTopology());
        }
    }
}
7. 运行mian方法

在这里插入图片描述

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风流 少年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值