94. Binary Tree Inorder Traversal

本文介绍了一种使用迭代而非递归的方式实现二叉树中序遍历的方法。通过栈结构来辅助实现节点的左右子树访问顺序,避免了递归带来的堆栈溢出风险。

迭代方式:

class Solution {
public:
    vector<int> inorderTraversal(TreeNode* root) {
        vector<int> vt;
        stack<TreeNode*> st;
        
        if(root==NULL)
            return vt;
        
        TreeNode* now=root;

        while(now!=NULL||!st.empty())
        {
            while(now!=NULL)
            {
                st.push(now);
                now=now->left;
            }
            
            if(!st.empty())
            {
                now=st.top();
                st.pop();
                
                vt.push_back(now->val);
                now=now->right;
            }
        }
        return vt;
    }
    
};


数据集介绍:电力线目标检测数据集 一、基础信息 数据集名称:电力线目标检测数据集 图片数量: 训练集:2898张图片 验证集:263张图片 测试集:138张图片 总计:3299张图片 分类类别: 类别ID: 0(电力线) 标注格式: YOLO格式,包含对象标注信息,适用于目标检测任务。 数据格式:JPEG/PNG图片,来源于空中拍摄或监控视觉。 二、适用场景 电力设施监控与巡检: 数据集支持目标检测任务,帮助构建能够自动识别和定位电力线的AI模型,用于无人机或固定摄像头巡检,提升电力设施维护效率和安全性。 能源与公用事业管理: 集成至能源管理系统中,提供实时电力线检测功能,辅助进行风险 assessment 和预防性维护,优化能源分配。 计算机视觉算法研究: 支持目标检测技术在特定领域的应用研究,促进AI在能源和公用事业行业的创新与发展。 专业培训与教育: 数据集可用于电力行业培训课程,作为工程师和技术人员学习电力线检测与识别的重要资源。 三、数据集优势 标注精准可靠: 每张图片均经过专业标注,确保电力线对象的定位准确,适用于高精度模型训练。 数据多样性丰富: 包含多种环境下的电力线图片,如空中视角,覆盖不同场景条件,提升模型的泛化能力和鲁棒性。 任务适配性强: 标注格式兼容YOLO等主流深度学习框架,便于快速集成和模型开发,支持目标检测任务的直接应用。 实用价值突出: 专注于电力线检测,为智能电网、自动化巡检和能源设施监控提供关键数据支撑,具有较高的行业应用价值。
【弹簧阻尼器】基于卡尔曼滤波弹簧质量阻尼器系统噪声测量实时状态估计研究(Matlab代码实现)内容概要:本文围绕“基于卡尔曼滤波的弹簧质量阻尼器系统噪声测量与实时状态估计”展开研究,利用Matlab代码实现对系统状态的精确估计。重点在于应用卡尔曼滤波技术处理系统中存在的噪声干扰,提升对弹簧质量阻尼器系统动态行为的实时观测能力。文中详细阐述了系统建模、噪声特性分析及卡尔曼滤波算法的设计与实现过程,展示了滤波算法在抑制测量噪声、提高状态估计精度方面的有效性。同时,该研究属于更广泛的信号处理与状态估计技术应用范畴,适用于复杂动态系统的监控与控制。; 适合人群:具备一定控制系统理论基础和Matlab编程经验的高校研究生、科研人员及工程技术人员,尤其适合从事动态系统建模、状态估计与滤波算法研究的相关人员。; 使用场景及目标:①应用于机械、航空航天、自动化等领域中对振动系统状态的高精度实时估计;②为噪声环境下的传感器数据融合与状态预测提供算法支持;③作为卡尔曼滤波算法在实际物理系统中应用的教学与科研案例。; 阅读建议:建议读者结合Matlab代码实践,深入理解系统建模与滤波器设计的关键步骤,关注噪声建模与滤波参数调优对估计性能的影响,并可进一步拓展至扩展卡尔曼滤波(EKF)或无迹卡尔曼滤波(UKF)在非线性系统中的应用。
### 解决方案 要找到二叉树中节点'C'的兄弟节点,可以通过分析给定的中序遍历序列来实现。在中序遍历中,父节点位于其左子树和右子树之间。因此,通过定位'C'的位置并查找与其在同一层上的其他节点,可以推断出它的兄弟节点。 #### 中序遍历的特点 中序遍历遵循“左根右”的顺序访问节点。对于任意节点,如果它有兄弟节点,则该兄弟节点会在同一层次上被访问到。假设我们已知某个节点(如'C')的位置,那么我们可以利用这个位置信息进一步判断哪个节点可能是它的兄弟节点[^1]。 #### 给定数据 输入的中序遍历序列为 `{E, A, D, B, F, H, C, G}`。 目标是找出'C'的兄弟节点。 --- #### 步骤解析 1. **确定'C'的位置** 在中序遍历序列中,'C'出现在索引`6`处(基于零索引)。这意味着'C'属于某棵子树中的右侧部分,因为它是靠近序列末端的一个元素。 2. **寻找可能的父亲节点** 根据中序遍历特性,“父亲”总是介于两个孩子节点之间。观察序列可知,在'C'之前最近的一次分隔是由'H'完成的,而'H'本身又紧随'B'之后。这表明'B'很可能是'C'所在子树的一部分,并且作为潜在的父亲候选者之一。 3. **验证兄弟关系** 如果'B'确实是'C'的父亲,则另一个儿子应该是与'C'处于相同级别的节点——即'H'。这是因为'H'直接跟随着'B'出现,并且也满足父子结构的要求。 4. **结论** 基于上述推理过程得出最终答案:节点'C'的唯一兄弟节点为'H'[ ^2 ]. --- ### Python 实现代码示例 以下是用于解决此问题的一种简单方法: ```python def find_sibling(inorder_traversal, target_node): try: idx_target = inorder_traversal.index(target_node) # 查找左侧相邻项 (可能的兄弟节点) if idx_target > 0: potential_sibling_left = inorder_traversal[idx_target - 1] # 查找右侧相邻项 (可能的兄弟节点) if idx_target < len(inorder_traversal)-1: potential_sibling_right = inorder_traversal[idx_target + 1] return [potential_sibling_left,potential_sibling_right] except ValueError: return None inorder_sequence = ['E', 'A', 'D', 'B', 'F', 'H', 'C', 'G'] target = 'C' siblings_of_C = find_sibling(inorder_sequence,target) print(f"Siblings of '{target}' : {siblings_of_C}") ``` 运行以上脚本会返回如下结果: ``` Siblings of 'C' : ['H','G'] ``` 注意这里额外包含了后续节点‘G’,但实际上根据具体上下文需确认实际逻辑关联度再做筛选处理。 --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值