Practice Round APAC test 2017——Problem B. Robot Rock Band

本文探讨了一个有趣的算法问题:如何从四个列表中选择机器人组成乐队,使得它们的ID号码通过位运算符XOR得到的目标数值等于预设值。文章提供了一种解决方案,并附带了完整的代码实现。

Problem

You're the manager of Xorbitant, the world's first robot rock band. There will be four positions in the band, and there are N robots auditioning for each position. (No robot is auditioning for more than one position.) Every robot has a number, and multiple robots might have the same number, just as two people can have the same name.

You know from market research that your robot audiences won't care how well the robot band members make music, how handsome they are, or what scandalous things the tabloids say about them. Instead, the audience will be checking to see whether the four members' numbers, when bitwise XORed together, equal a certain trendy number K.

How many different sets of four robots (one for each position) is it possible to choose so that the band will have this property? More specifically, given four lists A, B, C, D containing N numbers each, how many ways are there to choose one number a from list A, one number b from list B, and so on, such that a^b^c^d = K? (Here ^ represents the bitwise XOR operation.)

Input

The first line of the input gives the number of test cases, TT test cases follow. Each case begins with one line with two space-separated integers, N and K, as described above. Then, four more lines follow. Each has N space-separated integers and represents the ID numbers of the robots auditioning for a certain position in the band.

Output

For each test case, output one line containing "Case #x: y", where x is the test case number (starting from 1) and y is the number of different bands that meet the conditions.

Limits

1 ≤ T ≤ 10.
0 ≤ K ≤ 109.
0 ≤ all robot numbers ≤ 109.

Small dataset

1 ≤ N ≤ 50.

Large dataset

1 ≤ N ≤ 1000.

Sample


Input 
 

Output 
 
2
2 3 
0 0
2 0
0 0
0 1
2 0
1 10
1 10
1 10
1 10

Case #1: 4
Case #2: 8

In sample case #1, in order to get a combined bitwise XOR of 3, the robot chosen from the second list must be 2, and the robot chosen from the fourth list must be 1. For the first and third lists, either of the two 0 robots can be chosen, so there are 2 * 2 = 4 possible bands that meet the criteria. Note that even though all of these bands are of the form (0, 2, 0, 1), they are considered different because the selections from the lists were different.



第一和第二行异或,第三和第四行异或,两边映射;

#include <iostream>
#include <string>
#include <vector>
#include <set>
#include <unordered_map>
using namespace std;

unordered_map<int, long long int> mp;

int main()
{

    
    int t,T,N,K;
    int i,j;
    
    cin>>T;
    for(t=1;t<=T;t++)
    {
        cin>>N>>K;
        int v;
        vector<int> a,b,c,d;
        
        mp.clear();
        for(i=0;i<N;i++)
        {
            cin>>v;
            a.push_back(v);
        }
        
        for(i=0;i<N;i++)
        {
            cin>>v;
            b.push_back(v);
        }
        
        for(i=0;i<N;i++)
        {
            cin>>v;
            c.push_back(v);
        }
        
        for(i=0;i<N;i++)
        {
            cin>>v;
            d.push_back(v);
        }
        
        for(i=0;i<N;i++)
            for(j=0;j<N;j++)
                mp[a[i]^b[j]]++;
        
        long long int ans=0;
        for(i=0;i<N;i++)
            for(j=0;j<N;j++)
            {
                if(mp.find(c[i]^d[j]^K)!=mp.end())
                    ans+=mp[c[i]^d[j]^K];
            }
        
        cout<<"Case #"<<t<<": "<<ans<<endl;

    }
    return 0;
}


内容概要:本文系统阐述了智能物流路径规划的技术体系与实践应用,涵盖其发展背景、核心问题建模、关键算法、多目标与动态环境处理、系统架构及典型应用场景。文章以车辆路径问题(VRP)及其变体为核心数学模型,介绍了从Dijkstra、A*等单智能体算法到多车VRP的元启发式求解方法(如遗传算法、蚁群算法、大规模邻域搜索),并深入探讨了多目标优化(成本、时间、碳排放)与动态环境(实时订单、交通变化)下的自适应规划策略。结合城市配送、干线运输、场内物流等案例,展示了路径规划在提升效率、降低成本方面的实际价值,并分析了当前面临的复杂性、不确定性等挑战,展望了AI融合、数字孪生、车路协同等未来趋势。; 适合人群:具备一定物流、运筹学或计算机基础,从事智能交通、物流调度、算法研发等相关工作的技术人员与管理人员,工作年限1-5年为宜。; 使用场景及目标:①理解智能物流路径规划的整体技术架构与核心算法原理;②掌握VRP建模方法与多目标、动态环境下路径优化的实现策略;③为物流系统设计、算法选型与系统优化提供理论依据与实践参考; 阅读建议:建议结合文中案例与数学模型,重点理解算法选择与实际业务场景的匹配逻辑,关注动态规划与多目标优化的工程实现难点,可配合仿真工具或开源求解器进行实践验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值