机器学习_09_两种矩阵图

本文介绍了使用Python的Pandas库和Matplotlib库来绘制数据集的相关矩阵图和散点矩阵图的方法。通过corr()方法计算属性间的相关性,并用matshow()函数绘制热力图,清晰展示各属性之间的相关性强度。同时,利用scatter_matrix()方法,生成散点矩阵图,直观呈现变量间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

01.相关矩阵图的绘制

from pandas import read_csv
import matplotlib.pyplot  as plt
import numpy as np
filename = 'Pima_Indians.csv'
names = ['preg','plas','pres','skin','test','mess','pedi','age','class']
data = read_csv(filename,names=names)
#corr()方法——计算属性相互影响的矩阵
correlations=data.corr()
#相关矩阵图法
fig = plt.figure()
ax = fig.add_subplot(111)
cax = ax.matshow(correlations,vmin=-1,vmax=1)
fig.colorbar(cax)
ticks = np.arange(0,9,1)
ax.set_xticks(ticks)
ax.set_yticks(ticks)
ax.set_xticklabels(names)
ax.set_yticklabels(names)
plt.show()

在这里插入图片描述
02.scatter_matrix() 方法绘制 散点矩阵图

from pandas import read_csv
import matplotlib.pyplot  as plt
from pandas.plotting import scatter_matrix
filename = 'Pima_Indians.csv'
names = ['preg','plas','pres','skin','test','mess','pedi','age','class']
data = read_csv(filename,names=names)
# 02.scatter_matrix() 方法绘制 散点矩阵图
scatter_matrix(data)
plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值