01.调整数据尺度: MinMaxScaler()类
# 01.调整数据尺度: MinMaxScaler()类
from pandas import read_csv
from numpy import set_printoptions
from sklearn.preprocessing import MinMaxScaler
# a.导入数据
filename = 'Pima_Indians.csv'
names = ['preg','plas','pres','skin',
'test','mess','pedi','age','class']
data = read_csv(filename,names=names)
# b.将数据分为输入数据和输出结果
array = data.values
X = array[:,0:8]
Y = array[:,8]
transformer = MinMaxScaler(feature_range=(0,1))
# c。数据转换
newX = transformer.fit_transform(X)
# 设定数据的打印格式
set_printoptions(precision=3)
print(newX)
02.正态化数据处理正态分布StandardScaler().fit()
# 02.正态化数据处理正态分布StandardScaler().fit()
from pandas import read_csv
from numpy import set_printoptions
from sklearn.preprocessing import StandardScaler
# a.导入数据
filename = 'Pima_Indians.csv'
names = ['preg','plas','pres','skin',
'test','mess','pedi','age','class']
data = read_csv(filename,names=names)
# b.将数据分为输入数据和输出结果
array = data.values
X = array[:,0:8]
Y = array[:,8]
transformer = StandardScaler().fit(X)
# c。数据转换
newX = transformer.fit_transform(X)
# 设定数据的打印格式
set_printoptions(precision=3)
print(newX)
03.标准化数据处理稀疏数据 Normalizer().fit(X)
# 03.标准化数据处理稀疏数据 Normalizer().fit(X)
from pandas import read_csv
from numpy import set_printoptions
from sklearn.preprocessing import Normalizer
# a.导入数据
filename = 'Pima_Indians.csv'
names = ['preg','plas','pres','skin',
'test','mess','pedi','age','class']
data = read_csv(filename,names=names)
# b.将数据分为输入数据和输出结果
array = data.values
X = array[:,0:8]
Y = array[:,8]
transformer = Normalizer().fit(X)
# c。数据转换
newX = transformer.fit_transform(X)
# 设定数据的打印格式
set_printoptions(precision=3)
print(newX)
04.二值数据生成明确值或特征工程增加属性
# 04.二值数据生成明确值或特征工程增加属性
from pandas import read_csv
from numpy import set_printoptions
from sklearn.preprocessing import Binarizer
# a.导入数据
filename = 'Pima_Indians.csv'
names = ['preg','plas','pres','skin',
'test','mess','pedi','age','class']
data = read_csv(filename,names=names)
# b.将数据分为输入数据和输出结果
array = data.values
X = array[:,0:8]
Y = array[:,8]
transformer = Binarizer(threshold=0.0).fit(X)
# c。数据转换
newX = transformer.fit_transform(X)
# 设定数据的打印格式
set_printoptions(precision=3)
print(newX)