/LGC动画引擎/MD2 file format

本文档详细介绍了 Quake2 游戏中使用的 MD2 模型文件格式,包括其结构组成、数据类型及大小、纹理信息、顶点与三角形数据等,并提供了读取和渲染模型的具体步骤。

MD2 file format
(Quake 2's models)

Written by David Henry, 19th December of 2004

Introduction

The MD2 model file format was introduced by id Software when releasing Quake 2 in November 1997. It's a file format quite simple to use and understand. MD2 models' characteristics are these:

  • Model's geometric data (triangles);
  • Frame-by-frame animations;
  • Structured data for drawing the model using GL_TRIANGLE_FAN and GL_TRIANGLE_STRIP primitives (called “OpenGL commands”).

Model's texture is in a separate file. One MD2 model can have only one texture at the same time.

MD2 model file's extension is “md2”. A MD2 file is a binary file divided in two part: the header dans the data. The header contains all information needed to use and manipulate the data.

Header
Data

Variable sizes

Variable types used in this document have those sizes:

  • char : 1 byte
  • short : 2 bytes
  • int : 4 bytes
  • float : 4 bytes

They correspond to C type sizes on the x86 architecture. Ensure that type sizes correspond to these ones if you're compiling for another architecture.

Endianess issues

Since the MD2 file format is a binary format, you'll have to deal with endianess. MD2 files are stored in little-endian (x86). If you're targetting a big-endian architecture (PowerPC, SPARC, ...), or simply want your program to be portable, you'll have to perform proper conversions for each word or double word read from the file.

The header

The header is a structure which comes at the beginning of the file:

/* MD2 header */
struct md2_header_t
{
int ident; /* magic number: "IDP2" */
int version; /* version: must be 8 */

int skinwidth; /* texture width */
int skinheight; /* texture height */

int framesize; /* size in bytes of a frame */

int num_skins; /* number of skins */
int num_vertices; /* number of vertices per frame */
int num_st; /* number of texture coordinates */
int num_tris; /* number of triangles */
int num_glcmds; /* number of opengl commands */
int num_frames; /* number of frames */

int offset_skins; /* offset skin data */
int offset_st; /* offset texture coordinate data */
int offset_tris; /* offset triangle data */
int offset_frames; /* offset frame data */
int offset_glcmds; /* offset OpenGL command data */
int offset_end; /* offset end of file */
};

ident is the magic number of the file. It is used to identify the file type. ident must be equal to 844121161 or to the string “IDP2”. We can obtain this number with the expression (('2'<<24) + ('P'<<16) + ('D'<<8) + 'I') .

version is the version number of the file format and must be equal to 8.

skinwidth and skinheight are respectively the texture width and the texture height of the model.

framesize is the size in bytes of a frame and all its data.

num_skins is the number of associated textures to the model.
num_vertices is the number of vertices for one frame.
num_st is the number of texture coordinates.
num_tris is the number of triangles.
num_glcmds is the number of OpenGL commands.
num_frames is the number of frame the model has.

offset_skins indicates the position in bytes from the beginning of the file to the texture data.
offset_st indicates the position of texture coordinate data.
offset_tris indicates the position of triangle data.
offset_frames indicates the position of frame data.
offset_glcmds indicates the position of OpenGL commands.
offset_end indicates the position of the end of the file.

Data types

Vector

The vector, composed of three floating coordinates (x, y, z):

/* Vector */
typedef float vec3_t[3];

Texture information

Texture informations are the list of texture names associated to the model:

/* Texture name */
struct md2_skin_t
{
char name[64]; /* texture file name */
};

Texture coordinates

Texture coordinates are stored in a structure as short integers. To get the true texture coordinates, you have to divide s by skinwidth and t by skinheight :

/* Texture coords */
struct md2_texCoord_t
{
short s;
short t;
};

Triangles

Each triangle has an array of vertex indices and an array of texture coordinate indices.

/* Triangle info */
struct md2_triangle_t
{
unsigned short vertex[3]; /* vertex indices of the triangle */
unsigned short st[3]; /* tex. coord. indices */
};

Vertices

Vertices are composed of “compressed” 3D coordinates, which are stored in one byte for each coordinate, and of a normal vector index. The normal vector array is stored in the anorms.h file of Quake 2 and hold 162 vectors in floating point (3 float ).

/* Compressed vertex */
struct md2_vertex_t
{
unsigned char v[3]; /* position */
unsigned char normalIndex; /* normal vector index */
};

Frames

Frames have specific informations for itself and the vertex list of the frame. Informations are used to uncompress vertices and obtain the real coordinates.

/* Model frame */
struct md2_frame_t
{
vec3_t scale; /* scale factor */
vec3_t translate; /* translation vector */
char name[16]; /* frame name */
struct md2_vertex_t *verts; /* list of frame's vertices */
};

To uncompress vertex coordinates, you need to multiply each component by the scale factor and then add the respective translation component:

vec3_t v;                     /* real vertex coords. */
struct md2_vertex_t vtx; /* compressed vertex */
struct md2_frame_t frame; /* a model frame */

v[i] = (vtx.v[i] * frame.scale[i]) + frame.translate[i];

OpenGL Commands

OpenGL commands are stored in an array of integer (int ). They are discussed at the end of this document.

Reading a MD2 file

Assuming that md2_model_t is a structure holding all your model's data and *mdl a pointer on a md2_model_t object, this code show how to load a MD2 model file:

int
ReadMD2Model (const char *filename, struct md2_model_t *mdl)
{
FILE *fp;
int i;

fp = fopen (filename, "rb");
if (!fp)
{
fprintf (stderr, "Error: couldn't open /"%s/"!/n", filename);
return 0;
}

/* Read header */
fread (&mdl->header, 1, sizeof (struct md2_header_t), fp);

if ((mdl->header.ident != 844121161) ||
(mdl->header.version != 8))
{
/* Error! */
fprintf (stderr, "Error: bad version or identifier/n");
fclose (fp);
return 0;
}

/* Memory allocations */
mdl->skins = (struct md2_skin_t *)
malloc (sizeof (struct md2_skin_t) * mdl->header.num_skins);
mdl->texcoords = (struct md2_texCoord_t *)
malloc (sizeof (struct md2_texCoord_t) * mdl->header.num_st);
mdl->triangles = (struct md2_triangle_t *)
malloc (sizeof (struct md2_triangle_t) * mdl->header.num_tris);
mdl->frames = (struct md2_frame_t *)
malloc (sizeof (struct md2_frame_t) * mdl->header.num_frames);
mdl->glcmds = (int *)malloc (sizeof (int) * mdl->header.num_glcmds);

/* Read model data */
fseek (fp, mdl->header.offset_skins, SEEK_SET);
fread (mdl->skins, sizeof (struct md2_skin_t),
mdl->header.num_skins, fp);

fseek (fp, mdl->header.offset_st, SEEK_SET);
fread (mdl->texcoords, sizeof (struct md2_texCoord_t),
mdl->header.num_st, fp);

fseek (fp, mdl->header.offset_tris, SEEK_SET);
fread (mdl->triangles, sizeof (struct md2_triangle_t),
mdl->header.num_tris, fp);

fseek (fp, mdl->header.offset_glcmds, SEEK_SET);
fread (mdl->glcmds, sizeof (int), mdl->header.num_glcmds, fp);

/* Read frames */
fseek (fp, mdl->header.offset_frames, SEEK_SET);
for (i = 0; i < mdl->header.num_frames; ++i)
{
/* Memory allocation for vertices of this frame */
mdl->frames[i].verts = (struct md2_vertex_t *)
malloc (sizeof (struct md2_vertex_t) * mdl->header.num_vertices);

/* Read frame data */
fread (mdl->frames[i].scale, sizeof (vec3_t), 1, fp);
fread (mdl->frames[i].translate, sizeof (vec3_t), 1, fp);
fread (mdl->frames[i].name, sizeof (char), 16, fp);
fread (mdl->frames[i].verts, sizeof (struct md2_vertex_t),
mdl->header.num_vertices, fp);
}

fclose (fp);
return 1;
}

Rendering the model

Here is an exemple of how to draw a frame n of a model mdl :

void
RenderFrame (int n, const struct md2_model_t *mdl)
{
int i, j;
GLfloat s, t;
vec3_t v;
struct md2_frame_t *pframe;
struct md2_vertex_t *pvert;

/* Check if n is in a valid range */
if ((n < 0) || (n > mdl->header.num_frames - 1))
return;

/* Enable model's texture */
glBindTexture (GL_TEXTURE_2D, mdl->tex_id);

/* Draw the model */
glBegin (GL_TRIANGLES);
/* Draw each triangle */
for (i = 0; i < mdl->header.num_tris; ++i)
{
/* Draw each vertex */
for (j = 0; j < 3; ++j)
{
pframe = &mdl->frames[n];
pvert = &pframe->verts[mdl->triangles[i].vertex[j]];

/* Compute texture coordinates */
s = (GLfloat)mdl->texcoords[mdl->triangles[i].st[j]].s / mdl->header.skinwidth;
t = (GLfloat)mdl->texcoords[mdl->triangles[i].st[j]].t / mdl->header.skinheight;

/* Pass texture coordinates to OpenGL */
glTexCoord2f (s, t);

/* Normal vector */
glNormal3fv (anorms_table[pvert->normalIndex]);

/* Calculate vertex real position */
v[0] = (pframe->scale[0] * pvert->v[0]) + pframe->translate[0];
v[1] = (pframe->scale[1] * pvert->v[1]) + pframe->translate[1];
v[2] = (pframe->scale[2] * pvert->v[2]) + pframe->translate[2];

glVertex3fv (v);
}
}
glEnd ();
}

Animation

MD2 models are frame-by-frame animated. A frame is a screenshot of an animation. To avoid jerky and ugly animations, we use linear interpolation between vertex coordinates of two consecutive frames (the current frame we are drawing and the next frame). We do the same for the normal vector:

struct md2_frame_t *pframe1, *pframe2;
struct md2_vertex_t *pvert1, *pvert2;
vec3_t v_curr, v_next, v;

for (/* ... */)
{
pframe1 = &mdl->frames[current];
pframe2 = &mdl->frames[current + 1];
pvert1 = &pframe1->verts[mdl->triangles[i].vertex[j]];
pvert2 = &pframe2->verts[mdl->triangles[i].vertex[j]];

/* ... */

v_curr[0] = (pframe1->scale[0] * pvert1->v[0]) + pframe1->translate[0];
v_curr[1] = (pframe1->scale[1] * pvert1->v[1]) + pframe1->translate[1];
v_curr[2] = (pframe1->scale[2] * pvert1->v[2]) + pframe1->translate[2];

v_next[0] = (pframe2->scale[0] * pvert2->v[0]) + pframe2->translate[0];
v_next[1] = (pframe2->scale[1] * pvert2->v[1]) + pframe2->translate[1];
v_next[2] = (pframe2->scale[2] * pvert2->v[2]) + pframe2->translate[2];

v[0] = v_curr[0] + interp * (v_next[0] - v_curr[0]);
v[1] = v_curr[1] + interp * (v_next[1] - v_curr[1]);
v[2] = v_curr[2] + interp * (v_next[2] - v_curr[2]);

/* ... */
}

v is the final vertex to draw. interp is the interpolation percent between the two frames. It's a float which ranges from 0.0 to 1.0. When it is equal to 1.0, current is incremented by 1 and interp is reinitialized at 0.0. It is useless to interpolate texture coordinates because they are the same for all the model frames. It is preferable that interp is related to the program's number of rendering frame per second (fps).

void
Animate (int start, int end, int *frame, float *interp)
{
if ((*frame < start) || (*frame > end))
*frame = start;

if (*interp >= 1.0f)
{
/* Move to next frame */
*interp = 0.0f;
(*frame)++;

if (*frame >= end)
*frame = start;
}
}

Using OpenGL commands

OpenGL commands are structured data for drawing the model using only GL_TRIANGLE_FAN and GL_TRIANGLE_STRIP primitives. It's an array of integers (int ) which can be read in packets:

  • The first integer is the number of vertices to draw for a new primitive. If it's a positive value, the primitive is GL_TRIANGLE_STRIP , otherwise it's a GL_TRIANGLE_FAN .
  • The next integers can be taken by packet of 3 for as many vertices as there is to draw. The two first are the texture coordinates in floating point and the third is the vertex index to draw.
  • When the number of vertices to draw is 0, then we have finished rendering the model.

We can create a structure for those data packets:

/* GL command packet */
struct md2_glcmd_t
{
float s; /* s texture coord. */
float t; /* t texture coord. */
int index; /* vertex index */
};

Using this rendering algorithm implies a better frame rate than the classical method because we don't use GL_TRIANGLES primitives but GL_TRIANGLE_FAN and GL_TRIANGLE_STRIP primitives (which use less GPU time) and texture coordinates are no longer calculated (no need do divide by skinwidth and skinheight). Here is an exemple of how to use them:

void
RenderFrameWithGLCmds (int n, const struct md2_model_t *mdl)
{
int i, *pglcmds;
vec3_t v;
struct md2_frame_t *pframe;
struct md2_vertex_t *pvert;
struct md2_glcmd_t *packet;

/* Check if n is in a valid range */
if ((n < 0) || (n > mdl->header.num_frames - 1))
return;

/* Enable model's texture */
glBindTexture (GL_TEXTURE_2D, mdl->tex_id);

/* pglcmds points at the start of the command list */
pglcmds = mdl->glcmds;

/* Draw the model */
while ((i = *(pglcmds++)) != 0)
{
if (i < 0)
{
glBegin (GL_TRIANGLE_FAN);
i = -i;
}
else
{
glBegin (GL_TRIANGLE_STRIP);
}

/* Draw each vertex of this group */
for (/* Nothing */; i > 0; --i, pglcmds += 3)
{
packet = (struct md2_glcmd_t *)pglcmds;
pframe = &mdl->frames[n];
pvert = &pframe->verts[packet->index];

/* Pass texture coordinates to OpenGL */
glTexCoord2f (packet->s, packet->t);

/* Normal vector */
glNormal3fv (anorms_table[pvert->normalIndex]);

/* Calculate vertex real position */
v[0] = (pframe->scale[0] * pvert->v[0]) + pframe->translate[0];
v[1] = (pframe->scale[1] * pvert->v[1]) + pframe->translate[1];
v[2] = (pframe->scale[2] * pvert->v[2]) + pframe->translate[2];

glVertex3fv (v);
}

glEnd ();
}
}

Constants

Here are some constant values defining maximal dimensions:

  • Maximum number of triangles: 4096
  • Maximum number of vertices: 2048
  • Maximum number of texture coordinates: 2048
  • Maximum number of frames: 512
  • Maximum number of skins: 32
  • Number of precalculated normal vectors: 162

Sample code: md2.c (16 KB), anorms.h (6.7 KB). No texture mapping.

This document is available under the terms of the GNU Free Documentation License (GFDL)
© David Henry – contact : tfc_duke (AT) club-internet (DOT) fr

MATLAB主动噪声和振动控制算法&mdash;&mdash;对较大的次级路径变化具有鲁棒性内容概要:本文主要介绍了一种在MATLAB环境下实现的主动噪声和振动控制算法,该算法针对较大的次级路径变化具有较强的鲁棒性。文中详细阐述了算法的设计原理与实现方法,重点解决了传统控制系统中因次级路径动态变化导致性能下降的问题。通过引入自适应机制和鲁棒控制策略,提升了系统在复杂环境下的稳定性和控制精度,适用于需要高精度噪声与振动抑制的实际工程场景。此外,文档还列举了多个MATLAB仿真实例及相关科研技术服务内容,涵盖信号处理、智能优化、机器学习等多个交叉领域。; 适合人群:具备一定MATLAB编程基础和控制系统理论知识的科研人员及工程技术人员,尤其适合从事噪声与振动控制、信号处理、自动化等相关领域的研究生和工程师。; 使用场景及目标:①应用于汽车、航空航天、精密仪器等对噪声和振动敏感的工业领域;②用于提升现有主动控制系统对参数变化的适应能力;③为相关科研项目提供算法验证与仿真平台支持; 阅读建议:建议读者结合提供的MATLAB代码进行仿真实验,深入理解算法在不同次级路径条件下的响应特性,并可通过调整控制参数进一步探究其鲁棒性边界。同时可参考文档中列出的相关技术案例拓展应用场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值