数学定义与物理定义的异同,不是指数学上和物理上的定义之间有区别,而是数学家内部都有争议,物理学家内部也有类似争议。直积的思想背景来自Descartes,因此被称为Descartes积(Cartesian product)。直积有时候称为“完全直积”,以区别于“离散直积”(就是直和)。因此有限个因子的直积就是离散积,因此也就是直和。直和只有在非 Abel范畴情形下才被称为“离散直积”。每个向量空间可以分解为一维子空间的直和。
张量积的定义有很多。
1)含单位元的结合交换环A上的两个幺模的张量积。若V_i,V_j是自由A模,e_i,e_j分别是V_i,V_j的基,那么(e_i ⅹ e_j)就是V_1与V_2的直积的基。如果V_i,V_j都是有限生成自由模,那么dim(V_iⅹV_j)= dimV_i X dimV_j。数域K上有限维向量空间就是有限生成模,所以就适用于这种情形。物理中经常用到的张量积也是这样定义的。我们可以把两个张量积的概念推广到多个甚至无限个的情形。
2)与上面定义相关的还有两个矩阵A与B的张量积,也称为Kronecker积。如果A的矩阵元为a_ij,B的矩阵元为b_mn,那么A与B的张量积的元素就是a_ij与b_mn分别相乘,形成的矩阵的行数就是im,列数就是jn。如果我们把矩阵A看为ij维空间,把矩阵B看成mn维空间,那么矩阵A与B的张量积就是ijmn维空间,与第一种定义是对应的。
3)(拓扑空间上)向量丛的张量积。各个向量丛的转移函数的矩阵张量积(Kronecker积)就是向量丛张量积的转移函数。