Sensors Overview

Sensors Overview

The Android platform supports three broad categories of sensors:

a> Motion sensors

These sensors measure acceleration forces and rotational forces along three axes. This category includes accelerometers, gravity sensors, gyroscopes, and rotation vector sensors.

b> Environmental sensors

These sensors measure various environmental parameters, such as ambient air temperature and pressure, illumination, and humidity. This category includes barometers, photometers, and thermometers.

c> Position sensors

These sensors measure the physical position of a device. This category includes orientation sensors and magnetometers.

We can use the sensor framework to do the following:

a> Determine which sensors are available on a device.

b> Determine an individual sensor's capabilities

c> Acquire raw sensor data and define the minimum rate at which you acquire sensor data.

d> Register and unregister sensor event listeners that monitor sensor changes.

Introduction to Sensors

Most handset devices and tablets have an accelerometer and a magnetometer, but fewer devices have barometers or thermometers.

Sensor Framework

In a typical application we use these sensor-related APIs to perform two basic tasks: a> Identifying sensors and sensor capabilities, and b> Monitor sensor events.

Identifying sensors ans Sensor Capabilities

To identify the sensors that are on a device you first need to get a reference to the sensor service. To do this, you create an instance of the SensorManager class by calling the getSystemService() method and passing in the SENSOR_SERVICE argument. Next, you can get a listing of every sensor on a device by calling the getSensorList() method and using the TYPE_ALL constant.

	private List<Sensor> getAllSensorsOnDevice() {
		SensorManager manager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
		return manager.getSensorList(Sensor.TYPE_ALL);
	}
You can also determine whether a specific type of sensor exists on a device by using the getDefaultSensor() method and passing in the type constant for a specific sensor.

	private boolean isAccelerometerSensorAvailable(){
		SensorManager manager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
		return manager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER) == null;
	}
Monitoring Sensor Events

To monitor raw sensor data you need to implement two callback methods that are exposed through the SensorEventListener interface: onAccuracyChanged() and onSensorChanged().

a> A sensor's accuracy changes:

In this case the system invokes the onAccuracyChanged() method, providing you with a reference to the sensor object that changed and the new accuracy of the sensor. Accuracy is represented by one of four status constants: SENSOR_STATUS_ACCURACY_LOW, SENSOR_STATUS_ACCURACY_MEDIUM, SENSOR_STATUS_ACCURACY_HIGH, SENSOR_STATUS_ACCURACY_UNRELIABLE.

b> A sensor reports a new value:

In this case the system invokes the onSensorChanged() method, providing you with a SensorEvent object.

public class MainActivity extends Activity {

	private SensorManager mSensorManager;
	private Sensor mSensor;
	private SensorEventListener mSensorEventListener;

	@Override
	protected void onCreate(Bundle savedInstanceState) {
		super.onCreate(savedInstanceState);
		setContentView(R.layout.activity_main);
		mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE);
		mSensor = mSensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
		mSensorEventListener = new SensorEventListener() {

			@Override
			public void onSensorChanged(SensorEvent event) {
				Log.i("tag", "onSensorChanged");
				int value = (int) event.values[0];
				Log.i("tag", "value = " + value);

			}

			@Override
			public void onAccuracyChanged(Sensor sensor, int accuracy) {
				Log.i("tag", "onAccuracyChanged");
			}
		};
	}
	

	@Override
	protected void onResume() {
		super.onResume();

		mSensorManager.registerListener(mSensorEventListener, mSensor,
				SensorManager.SENSOR_DELAY_GAME);
	}

	@Override
	protected void onPause() {
		super.onPause();
		
		mSensorManager.unregisterListener(mSensorEventListener, mSensor);
	}
}
1. 用户与权限管理模块 角色管理: 学生:查看实验室信息、预约设备、提交耗材申请、参与安全考核 教师:管理课题组预约、审批学生耗材申请、查看本课题组使用记录 管理员:设备全生命周期管理、审核预约、耗材采购与分发、安全检查 用户操作: 登录认证:统一身份认证(对接学号 / 工号系统,模拟实现),支持密码重置 信息管理:学生 / 教师维护个人信息(联系方式、所属院系),管理员管理所有用户 权限控制:不同角色仅可见对应功能(如学生不可删除设备信息) 2. 实验室与设备管理模块 实验室信息管理: 基础信息:实验室编号、名称、位置、容纳人数、开放时间、负责人 功能分类:按学科(计算机实验室 / 电子实验室 / 化学实验室)标记,关联可开展实验类型 状态展示:实时显示当前使用人数、设备运行状态(正常 / 故障) 设备管理: 设备档案:名称、型号、规格、购置日期、单价、生产厂家、存放位置、责任人 全生命周期管理: 入库登记:管理员录入新设备信息,生成唯一资产编号 维护记录:记录维修、校准、保养信息(时间、内容、执行人) 报废处理:登记报废原因、时间,更新设备状态为 "已报废" 设备查询:支持按名称、型号、状态多条件检索,显示设备当前可用情况 3. 预约与使用模块 预约管理: 预约规则:学生可预约未来 7 天内的设备 / 实验室,单次最长 4 小时(可设置) 预约流程:选择实验室→选择设备→选择时间段→提交申请(需填写实验目的) 审核机制:普通实验自动通过,高危实验(如化学实验)需教师审核 使用记录: 签到 / 签退:到达实验室后扫码签到,离开时签退,系统自动记录实际使用时长 使用登记:填写实验内容、设备运行情况(正常 / 异常),异常情况需详细描述 违规管理:迟到 15 分钟自动取消预约,多次违规限制预约权限 4. 耗材与安全管理模块 耗材管理: 耗材档案:名称、规格、数量、存放位置、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值