Springboot后端管理项目+AI对话式分析
什么叫对话式分析
对话式分析(Conversational Analytics)是一种通过自然语言交互实现数据探索的技术。用户无需掌握SQL或编程技能,像与真人对话一样用日常语言提问(如:“上季度华东区哪些产品的退货率超过5%?”),系统自动解析语义、生成查询、返回可视化结果。
与传统分析方式的本质区别
- 对比维度 传统分析 对话式分析
- 交互方式 编写SQL/使用固定报表模板 直接输入自然语言问题
- 响应速度 需求排期→开发→测试(3天+) 实时响应(秒级)
- 技术门槛 需懂数据库结构和技术术语 普通业务人员零门槛操作
- 灵活度 受限于预设指标和维度 支持任意组合的即时分析
Springboot + 智普AI 实现
智普AI-官网:https://bigmodel.cn/dev/activities/free/glm-4-flash
对话式-数据库自动分析:核心就是数据库表和字段注释一定要清楚
示例数据库(一定要中文描述足够详细)
CREATE TABLE `sys_dept` (
`dept_id` bigint(20) NOT NULL COMMENT '部门id',
`tenant_id` varchar(20) DEFAULT '000000' COMMENT '租户编号',
`parent_id` bigint(20) DEFAULT '0' COMMENT '父部门id',
`ancestors` varchar(500) DEFAULT '' COMMENT '祖级列表',
`dept_name` varchar(30) DEFAULT '' COMMENT '部门名称',
`dept_category` varchar(100) DEFAULT NULL COMMENT '部门类别编码',
`order_num` int(11) DEFAULT '0' COMMENT '显示顺序',
`leader` bigint(20) DEFAULT NULL COMMENT '负责人',
`phone` varchar(11) DEFAULT NULL COMMENT '联系电话',
`email` varchar(50) DEFAULT NULL COMMENT '邮箱',
`status` char(1) DEFAULT '0' COMMENT '部门状态(0正常 1停用)',
`del_flag` char(1) DEFAULT '0' COMMENT '删除标志(0代表存在 2代表删除)',
`create_dept` bigint(20) DEFAULT NULL COMMENT '创建部门',
`create_by` bigint(20) DEFAULT NULL COMMENT '创建者',
`create_time` datetime DEFAULT NULL COMMENT '创建时间',
`update_by` bigint(20) DEFAULT NULL COMMENT '更新者',
`update_time` datetime DEFAULT NULL COMMENT '更新时间',
PRIMARY KEY (`dept_id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 ROW_FORMAT=DYNAMIC COMMENT='部门表';
CREATE TABLE `sys_user` (
`user_id` bigint(20) NOT NULL COMMENT '用户ID',
`tenant_id` varchar(20) DEFAULT '000000' COMMENT '租户编号',
`dept_id` bigint(20) DEFAULT NULL COMMENT '部门ID',
`user_name` varchar(30) NOT NULL COMMENT '用户账号',
`nick_name` varchar(30) NOT NULL COMMENT '用户昵称',
`user_type` varchar(10) DEFAULT 'sys_user' COMMENT '用户类型(sys_user系统用户)',
`email` varchar(50) DEFAULT '' COMMENT '用户邮箱',
`phone_number` varchar(11) DEFAULT '' COMMENT '手机号码',
`sex` char(1) DEFAULT '0' COMMENT '用户性别(0男 1女 2未知)',
`avatar` bigint(20) DEFAULT NULL COMMENT '头像地址',
`password` varchar(100) DEFAULT '' COMMENT '密码',
`status` char(1) DEFAULT '0' COMMENT '帐号状态(1正常 0停用)',
`del_flag` char(1) DEFAULT '0' COMMENT '删除标志(0代表存在 2代表删除)',
`login_ip` varchar(128) DEFAULT '' COMMENT '最后登录IP',
`login_date` datetime DEFAULT NULL COMMENT '最后登录时间',
`create_dept` bigint(20) DEFAULT NULL COMMENT '创建部门',
`create_by` bigint(20) DEFAULT NULL COMMENT '创建者',
`create_time` datetime DEFAULT NULL COMMENT '创建时间',
`update_by` bigint(20) DEFAULT NULL COMMENT '更新者',
`update_time` datetime DEFAULT NULL COMMENT '更新时间',
`remark` varchar(500) DEFAULT NULL COMMENT '备注',
PRIMARY KEY (`user_id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 ROW_FORMAT=DYNAMIC COMMENT='用户信息表';
CREATE TABLE `sys_role` (
`role_id` bigint(20) NOT NULL COMMENT '角色ID',
`tenant_id` varchar(20) DEFAULT '000000' COMMENT '租户编号',
`role_name` varchar(30) NOT NULL COMMENT '角色名称',
`role_key` varchar(100) NOT NULL COMMENT '角色权限字符串',
`role_sort` int(11) NOT NULL COMMENT '显示顺序',
`data_scope` char(1) DEFAULT '1' COMMENT '数据范围(1:全部数据权限 2:自定数据权限 3:本部门数据权限 4:本部门及以下数据权限)',
`menu_check_strictly` tinyint(1) DEFAULT '1' COMMENT '菜单树选择项是否关联显示',
`dept_check_strictly` tinyint(1) DEFAULT '1' COMMENT '部门树选择项是否关联显示',
`status` char(1) NOT NULL COMMENT '角色状态(0正常 1停用)',
`del_flag` char(1) DEFAULT '0' COMMENT '删除标志(0代表存在 2代表删除)',
`create_dept` bigint(20) DEFAULT NULL COMMENT '创建部门',
`create_by` bigint(20) DEFAULT NULL COMMENT '创建者',
`create_time` datetime DEFAULT NULL COMMENT '创建时间',
`update_by` bigint(20) DEFAULT NULL COMMENT '更新者',
`update_time` datetime DEFAULT NULL COMMENT '更新时间',
`remark` varchar(500) DEFAULT NULL COMMENT '备注',
PRIMARY KEY (`role_id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 ROW_FORMAT=DYNAMIC COMMENT='角色信息表';
实现流程
- 用户发起请求
- 用户通过 /ai/zhi_pu_qa 接口发起请求,传入 question 和 dbName 参数。
- 获取数据库表名和注释
- 调用 getTablesAndComments 方法,使用 SHOW CREATE TABLE 语句获取指定数据库的所有表名和注释。
- SQL 语句示例:
SELECT TABLE_NAME, TABLE_COMMENT FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA = 'test_admin_123';
- 检查表名和注释是否为空
- 如果 tablesAndComments 为空,返回“知识库未找到相关信息”。
- 询问AI获取相关表信息
- 调用 handlerAiQuestion 方法,将表名和注释信息传递给 AI,询问与问题相关的表信息。
- AI 返回的格式示例:
{
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "[{\"tableName\":\"sys_user\"}]",
"role": "assistant"
}
}
],
"created": 1743232278,
"id": "202503291511179a664d1e8d0245d7",
"model": "glm-4-flash",
"request_id": "guo_tong_1743232383435",
"usage": {
"completion_tokens": 32,
"prompt_tokens": 498,
"total_tokens": 530
}
}
- 检查AI返回是否为空
- 如果 tableInfosJson 为空,返回“知识库未找到相关信息”。
- 解析AI返回 的表信息
- 调用 parseTableFromResponse 方法,从 AI 返回的 JSON 中解析出表名列表
- 解析示例:
[{"tableName":"sys_user"}]
- 解析后得到表名字符串:
sys_user
- 检查表信息是否为空
- 如果 tableNames 为空,返回“知识库未找到相关信息”。
- 获取表的DDL
- 调用 getTableDdl 方法,根据解析出的表名列表获取每个表的建表语句(DDL)。
- SQL 语句示例:
SHOW CREATE TABLE `test_admin_123`.`sys_user`;
- 检查DDL是否为空
- 如果 columnsAndComments 为空,返回“知识库未找到相关信息”。
- 询问AI生成SQL
- 调用 handlerAiQuestion 方法,将表的 DDL 信息传递给 AI,询问生成查询 SQL。
- AI 返回的格式示例:
{
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "SELECT * FROM `sys_user` WHERE YEAR(`create_time`) = 2024",
"role": "assistant"
}
}
],
"created": 1743232278,
"id": "202503291511179a664d1e8d0245d7",
"model": "glm-4-flash",
"request_id": "guo_tong_1743232383435",
"usage": {
"completion_tokens": 32,
"prompt_tokens": 498,
"total_tokens": 530
}
}
- 检查AI返回是否为空
- 如果 result 为空,返回“接口调用失败,请检查日志!”。
- 解析AI返回的SQL
- 调用 parseSqlFromResponse 方法,从 AI 返回的 JSON 中解析出 SQL 语句。
- 解析示例:
{
"choices": [
{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "SELECT * FROM `sys_user` WHERE YEAR(`create_time`) = 2024",
"role": "assistant"
}
}
]
}
- 解析后得到 SQL 语句:
SELECT * FROM `sys_user` WHERE YEAR(`create_time`) = 2024
- 检查SQL是否为空
- 如果 sql 为空,返回“解析SQL失败,请检查AI返回的内容!”。
- 执行SQL
- 调用 executeSql 方法,使用 JDBC 执行解析出的 SQL 语句,获取查询结果。
- 返回查询结果
- 将查询结果转换为 JSON 字符串,返回给客户端。
[{
"tenant_id": "000000",
"del_flag": "0",
"create_time": 1731411199000,
"create_dept": 103,
"user_name": "test",
"sex": "0",
"login_date": 1731411199000,
"remark": "QQ",
"avatar": 10085,
"login_ip": "127.0.0.1",
"create_by": 1,
"password": "f379eaf3c831b04de153469d1bec345e",
"update_time": 1731411199000,
"user_type": "sys_user",
"user_id": 3,
"nick_name": "本部门及以下 密码666666",
"phone_number": "15888888888",
"dept_id": 108,
"update_by": 3,
"email": "crazyLionLi@163.com",
"status": "1"
}, {
"tenant_id": "000000",
"del_flag": "0",
"create_time": 1731411199000,
"create_dept": 103,
"user_name": "test1",
"sex": "1",
"login_date": 1731411199000,
"remark": "CMD",
"avatar": 10086,
"login_ip": "127.0.0.1",
"create_by": 1,
"password": "f379eaf3c831b04de153469d1bec345e",
"update_time": 1731411199000,
"user_type": "sys_user",
"user_id": 4,
"nick_name": "仅本人 密码666666",
"phone_number": "15888888888",
"dept_id": 102,
"update_by": 4,
"email": "crazyLionLi@163.com",
"status": "1"
}, {
"tenant_id": "000000",
"del_flag": "0",
"create_time": 1735371444000,
"create_dept": 103,
"user_name": "zhoujielun",
"sex": "1",
"login_date": 1731411199000,
"remark": "我是周杰伦,夜曲一响上台领奖",
"avatar": 10086,
"login_ip": "0:0:0:0:0:0:0:1",
"create_by": 1,
"password": "e10adc3949ba59abbe56e057f20f883e",
"update_time": 1735371444000,
"user_type": "sys_user",
"user_id": 1872909700790542337,
"nick_name": "周杰伦",
"phone_number": "14837983573",
"dept_id": 103,
"update_by": 1,
"email": "zhoujielun@163.com",
"status": "1"
}, {
"tenant_id": "000000",
"del_flag": "0",
"create_time": 1735372046000,
"create_dept": 103,
"user_name": "wanglihong",
"sex": "1",
"login_date": 1731411199000,
"remark": "我是王力宏,爱错一响,立即登场",
"avatar": 10086,
"login_ip": "0:0:0:0:0:0:0:1",
"create_by": 1,
"password": "e10adc3949ba59abbe56e057f20f883e",
"update_time": 1735372046000,
"user_type": "sys_user",
"user_id": 1872912222804516866,
"nick_name": "王力宏",
"phone_number": "15837357332",
"dept_id": 103,
"update_by": 1,
"email": "wanglihong@163.com",
"status": "1"
}, {
"tenant_id": "000000",
"del_flag": "0",
"create_time": 1735372147000,
"create_dept": 103,
"user_name": "huachenyu",
"sex": "1",
"login_date": 1731411199000,
"remark": "我是华晨宇,华语乐坛永远的神",
"avatar": 10086,
"login_ip": "0:0:0:0:0:0:0:1",
"create_by": 1,
"password": "e10adc3949ba59abbe56e057f20f883e",
"update_time": 1735711391000,
"user_type": "sys_user",
"user_id": 1872912647666540546,
"nick_name": "华晨宇",
"phone_number": "15837557332",
"dept_id": 103,
"update_by": 1,
"email": "huachenyu@163.com",
"status": "1"
}, {
"tenant_id": "000000",
"del_flag": "0",
"create_time": 1735372174000,
"create_dept": 103,
"user_name": "dengziqi",
"sex": "1",
"login_date": 1731411199000,
"remark": "我是邓紫棋,泡沫一响,立即登场",
"avatar": 10086,
"login_ip": "0:0:0:0:0:0:0:1",
"create_by": 1,
"password": "e10adc3949ba59abbe56e057f20f883e",
"update_time": 1735372174000,
"user_type": "sys_user",
"user_id": 1872912759570571265,
"nick_name": "邓紫棋",
"phone_number": "15837557332",
"dept_id": 103,
"update_by": 1,
"email": "dengziqi@163.com",
"status": "1"
}, {
"tenant_id": "000000",
"del_flag": "0",
"create_time": 1735372214000,
"create_dept": 103,
"user_name": "chenyixun",
"sex": "1",
"login_date": 1731411199000,
"remark": "我是陈奕迅,孤独患者一响,立即登场",
"avatar": 10086,
"login_ip": "0:0:0:0:0:0:0:1",
"create_by": 1,
"password": "e10adc3949ba59abbe56e057f20f883e",
"update_time": 1735372214000,
"user_type": "sys_user",
"user_id": 1872912929188225026,
"nick_name": "陈奕迅",
"phone_number": "15837557232",
"dept_id": 103,
"update_by": 1,
"email": "chenyixun@163.com",
"status": "1"
}, {
"tenant_id": "000000",
"del_flag": "0",
"create_time": 1735372278000,
"create_dept": 103,
"user_name": "linjunjie",
"sex": "1",
"login_date": 1731411199000,
"remark": "我是林俊杰,江南一响,青春回响",
"avatar": 10086,
"login_ip": "0:0:0:0:0:0:0:1",
"create_by": 1,
"password": "e10adc3949ba59abbe56e057f20f883e",
"update_time": 1735372278000,
"user_type": "sys_user",
"user_id": 1872913195568472066,
"nick_name": "林俊杰",
"phone_number": "15837117232",
"dept_id": 103,
"update_by": 1,
"email": "linjunjie@163.com",
"status": "1"
}, {
"tenant_id": "000000",
"del_flag": "0",
"create_time": 1735372341000,
"create_dept": 103,
"user_name": "layVueSuper",
"sex": "1",
"login_date": 1731411199000,
"remark": "我是layVueSuper,暮色回响",
"avatar": 10086,
"login_ip": "0:0:0:0:0:0:0:1",
"create_by": 1,
"password": "e10adc3949ba59abbe56e057f20f883e",
"update_time": 1735372341000,
"user_type": "sys_user",
"user_id": 1872913463194427394,
"nick_name": "layVueSuper",
"phone_number": "15837127232",
"dept_id": 103,
"update_by": 1,
"email": "layVueSuper@163.com",
"status": "1"
}, {
"tenant_id": "000000",
"del_flag": "0",
"create_time": 1735372409000,
"create_dept": 103,
"user_name": "zhangyunjing",
"sex": "1",
"login_date": 1731411199000,
"remark": "我是张芸京,偏爱永不落席",
"avatar": 10086,
"login_ip": "0:0:0:0:0:0:0:1",
"create_by": 1,
"password": "e10adc3949ba59abbe56e057f20f883e",
"update_time": 1735372409000,
"user_type": "sys_user",
"user_id": 1872913747660513281,
"nick_name": "张芸京",
"phone_number": "15837137232",
"dept_id": 103,
"update_by": 1,
"email": "zhangyunjing@163.com",
"status": "1"
}, {
"tenant_id": "000000",
"del_flag": "0",
"create_time": 1735372459000,
"create_dept": 103,
"user_name": "weilian",
"sex": "1",
"login_date": 1731411199000,
"remark": "我是韦礼安,如果可以-新星崛起",
"avatar": 10086,
"login_ip": "0:0:0:0:0:0:0:1",
"create_by": 1,
"password": "e10adc3949ba59abbe56e057f20f883e",
"update_time": 1735372459000,
"user_type": "sys_user",
"user_id": 1872913957228912641,
"nick_name": "韦礼安",
"phone_number": "15837137233",
"dept_id": 103,
"update_by": 1,
"email": "weilian@163.com",
"status": "1"
}, {
"tenant_id": "000000",
"del_flag": "0",
"create_time": 1735372508000,
"create_dept": 103,
"user_name": "wangfei",
"sex": "1",
"login_date": 1731411199000,
"remark": "我是王菲,如果可以-最后的天后",
"avatar": 10086,
"login_ip": "0:0:0:0:0:0:0:1",
"create_by": 1,
"password": "e10adc3949ba59abbe56e057f20f883e",
"update_time": 1735372508000,
"user_type": "sys_user",
"user_id": 1872914162380709890,
"nick_name": "王菲",
"phone_number": "15837137234",
"dept_id": 103,
"update_by": 1,
"email": "wangfei@163.com",
"status": "1"
}, {
"tenant_id": "000000",
"del_flag": "0",
"create_time": 1735372569000,
"create_dept": 103,
"user_name": "huge",
"sex": "1",
"login_date": 1731411199000,
"remark": "我是胡歌,仙剑-最后的古装",
"avatar": 10086,
"login_ip": "0:0:0:0:0:0:0:1",
"create_by": 1,
"password": "e10adc3949ba59abbe56e057f20f883e",
"update_time": 1735372569000,
"user_type": "sys_user",
"user_id": 1872914420015833090,
"nick_name": "胡歌",
"phone_number": "15837137236",
"dept_id": 103,
"update_by": 1,
"email": "huge@163.com",
"status": "1"
}, {
"tenant_id": "000000",
"del_flag": "0",
"create_time": 1735372652000,
"create_dept": 103,
"user_name": "zhongli",
"sex": "1",
"login_date": 1731411199000,
"remark": "我是钟离,璃月-岩王帝君",
"avatar": 10086,
"login_ip": "0:0:0:0:0:0:0:1",
"create_by": 1,
"password": "e10adc3949ba59abbe56e057f20f883e",
"update_time": 1735372652000,
"user_type": "sys_user",
"user_id": 1872914765664231425,
"nick_name": "钟离",
"phone_number": "15837137536",
"dept_id": 103,
"update_by": 1,
"email": "zhongli@163.com",
"status": "1"
}]
代码示例:
/**
* AI对话式分析同步调用
*/
@RequestMapping("/zhi_pu_qa")
public String testInvoke(@RequestParam(value = "question", defaultValue = "2024年创建的用户信息有哪些?", required = false) String question,
@RequestParam(value = "dbName", defaultValue = "test_admin_123", required = false) String dbName) {
// 获取指定数据库的所有表名和表注释
String tablesAndComments = getTablesAndComments(dbName);
String notFindMsg = "知识库未找到相关信息";
if (CharSequenceUtil.isBlank(tablesAndComments)) {
return notFindMsg;
}
// 询问Ai获取指定问题和表的相似的相关的表信息
String tableInfosJson = handlerAiQuestion(tablesAndComments, question, false);
if (CharSequenceUtil.isBlank(tableInfosJson)) {
return notFindMsg;
}
// 处理AI回答的数据获取实际用的表
String tableNames = parseTableFromResponse(tableInfosJson);
if (CharSequenceUtil.isBlank(tableNames)) {
return notFindMsg;
}
// 根据表名称--获取对应的表结构的列名和注释
String columnsAndComments = getTableDdl(dbName, tableNames);
// 将问题询问AI关联到那几张表--定位
String result = handlerAiQuestion(columnsAndComments, question, true);
if (result == null) {
return "接口调用失败,请检查日志!";
}
// 解析获取到的SQL
String sql = parseSqlFromResponse(result);
if (sql == null) {
return "解析SQL失败,请检查AI返回的内容!";
}
// 调用JDBC连接执行该SQL拿到结果
List<Map<String, Object>> resultList = executeSql(sql);
// 将结果转换为JSON字符串返回
return JSONUtil.toJsonStr(resultList);
}
你还想要完整示例吧
package com.gt.quality.controller;
import cn.dev33.satoken.annotation.SaIgnore;
import cn.hutool.core.collection.CollUtil;
import cn.hutool.core.text.CharSequenceUtil;
import cn.hutool.http.HttpResponse;
import cn.hutool.http.HttpUtil;
import cn.hutool.http.Method;
import cn.hutool.json.JSONObject;
import cn.hutool.json.JSONUtil;
import com.gt.quality.config.ZhiPuAIConstant;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;
import org.springframework.web.servlet.mvc.method.annotation.SseEmitter;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.stream.Collectors;
/**
* 万里悲秋常作客,百年多病独登台
*
* @author : makeJava
*/
@RestController
@RequestMapping("/ai")
@Slf4j
@SaIgnore
public class ZhiPuAiController {
// 请自定义自己的业务id
private static final String REQUEST_ID_TEMPLATE = "guo_tong_%d";
private static final String COMPLETIONS_URL = "https://open.bigmodel.cn/api/paas/v4/chat/completions";
@Value("${spring.datasource.url}")
private String dbUrl;
@Value("${spring.datasource.username}")
private String dbUsername;
@Value("${spring.datasource.password}")
private String dbPassword;
/**
* AI对话式分析同步调用
*/
@RequestMapping("/zhi_pu_qa")
public String testInvoke(@RequestParam(value = "question", defaultValue = "2024年创建的用户信息有哪些?", required = false) String question,
@RequestParam(value = "dbName", defaultValue = "test_admin_123", required = false) String dbName) {
// 获取指定数据库的所有表名和表注释
String tablesAndComments = getTablesAndComments(dbName);
String notFindMsg = "知识库未找到相关信息";
if (CharSequenceUtil.isBlank(tablesAndComments)) {
return notFindMsg;
}
// 询问Ai获取指定问题和表的相似的相关的表信息
String tableInfosJson = handlerAiQuestion(tablesAndComments, question, false);
if (CharSequenceUtil.isBlank(tableInfosJson)) {
return notFindMsg;
}
// 处理AI回答的数据获取实际用的表
String tableNames = parseTableFromResponse(tableInfosJson);
if (CharSequenceUtil.isBlank(tableNames)) {
return notFindMsg;
}
// 根据表名称--获取对应的表结构的列名和注释
String columnsAndComments = getTableDdl(dbName, tableNames);
// 将问题询问AI关联到那几张表--定位
String result = handlerAiQuestion(columnsAndComments, question, true);
if (result == null) {
return "接口调用失败,请检查日志!";
}
// 解析获取到的SQL
String sql = parseSqlFromResponse(result);
if (sql == null) {
return "解析SQL失败,请检查AI返回的内容!";
}
// 调用JDBC连接执行该SQL拿到结果
List<Map<String, Object>> resultList = executeSql(sql);
// 将结果转换为JSON字符串返回
return JSONUtil.toJsonStr(resultList);
}
/**
* Description:
*
* @author: makeJava
* @date: 2025-03-29 16:55:35
* @return:
*/
private static String handlerAiQuestion(String params, String question, boolean createSql) {
Map<String, Object> body = new HashMap<>();
body.put("model", "glm-4-flash");
Object messages;
if (createSql) {
messages = buildSqlParam(params, question);
} else {
messages = getSelectTableNames(params, question);
}
body.put("messages", messages);
body.put("request_id", String.format(REQUEST_ID_TEMPLATE, System.currentTimeMillis()));
body.put("do_sample", true);
body.put("stream", false);
body.put("temperature", 0.95);
body.put("max_tokens", 4095);
Map<String, Object> responseFormat = new HashMap<>();
responseFormat.put("type", "json_object");
body.put("response_format", responseFormat);
// function、retrieval、web_search。
body.put("type", "web_search");
String result = "null";
try (HttpResponse response = HttpUtil.createRequest(Method.POST, COMPLETIONS_URL)
.body(JSONUtil.toJsonStr(body))
.header("Authorization", "Bearer " + ZhiPuAIConstant.ZHI_PU_AI_API_KEY)
.execute()) {
// 使用 try-with-resources 确保资源自动关闭
result = response.body();
} catch (Exception e) {
log.error("调用接口失败: {}", e.getMessage(), e);
return null;
}
log.info("调用接口返回: {}", result);
return result;
}
/**
* 根据问题获取关联到要查询的表名
*/
private static Object getSelectTableNames(String tableNames, String question) {
List<Map<String, Object>> messages = new ArrayList<>();
Map<String, Object> msgItem = new HashMap<>();
msgItem.put("role", "user");
msgItem.put("content", "请你作为数据分析师," +
"现在数据库里面存在表这些:" + tableNames + ";帮助查询出" + question + ";具体输入格式返回为JSON,示例->[{'tableName':'table01'},{'tableName':'table02'}]]。");
messages.add(msgItem);
return messages;
}
private static List<Map<String, Object>> buildSqlParam(String tableInfos, String question) {
List<Map<String, Object>> messages = new ArrayList<>();
Map<String, Object> msgItem = new HashMap<>();
msgItem.put("role", "user");
msgItem.put("content", "请你作为数据分析师," +
"现在数据库的表结构是这样:" + tableInfos + ";帮助查询出" + question + ",具体输入的内容为标准的SQL即可。");
messages.add(msgItem);
return messages;
}
/**
* 获取数据库的表名和注释
*
* @param databaseName 数据库名称
* @return 表名和注释的JSON字符串
*/
public String getTablesAndComments(String databaseName) {
String sql = "SELECT TABLE_NAME, TABLE_COMMENT FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA = '" + databaseName + "'";
List<Map<String, Object>> resultList = executeSql(sql);
return JSONUtil.toJsonStr(resultList);
}
/**
* 获取指定表的列名和注释
*
* @param tableName 表名
* @return 列名和注释的JSON字符串
*/
public String getColumnsAndComments(String databaseName, String tableName) {
String sql = "SELECT COLUMN_NAME, COLUMN_COMMENT FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_SCHEMA = '" + databaseName + "' AND TABLE_NAME = '" + tableName + "'";
List<Map<String, Object>> resultList = executeSql(sql);
return JSONUtil.toJsonStr(resultList);
}
/**
* 从AI返回的JSON中解析表信息
*
* @param response AI返回的JSON字符串
* @return 解析后的表信息字符串
*/
@SuppressWarnings("unchecked")
private String parseTableFromResponse(String response) {
try {
Map<String, Object> responseMap = JSONUtil.toBean(response, Map.class);
List<Map<String, Object>> choices = (List<Map<String, Object>>) responseMap.get("choices");
if (choices != null && !choices.isEmpty()) {
Map<String, Object> choice = choices.get(0);
Map<String, Object> message = (Map<String, Object>) choice.get("message");
if (message != null) {
String content = (String) message.get("content");
if (content.contains("[")) {
if (content.startsWith("\n")) {
content = content.replace("\n", "");
}
List<JSONObject> list = JSONUtil.toList(content, JSONObject.class);
return list.stream()
.map(jsonObject -> jsonObject.getStr("tableName"))
.collect(Collectors.joining(","));
}
log.info("解析JSON---->: {}", content);
}
}
} catch (Exception e) {
log.error("解析JSON失败: {}", e.getMessage(), e);
}
return null;
}
/**
* 从AI返回的JSON中解析SQL
*
* @param response AI返回的JSON字符串
* @return 解析后的SQL字符串
*/
@SuppressWarnings("unchecked")
private String parseSqlFromResponse(String response) {
try {
Map<String, Object> responseMap = JSONUtil.toBean(response, Map.class);
List<Map<String, Object>> choices = (List<Map<String, Object>>) responseMap.get("choices");
if (choices != null && !choices.isEmpty()) {
Map<String, Object> choice = choices.get(0);
Map<String, Object> message = (Map<String, Object>) choice.get("message");
if (message != null) {
String content = (String) message.get("content");
if (content != null) {
if (content.startsWith("\n{")) {
Map<String, Object> contentMap = JSONUtil.toBean((String) message.get("content"), Map.class);
Object answer = contentMap.get("answer");
if (answer != null) {
return answer.toString();
}
Object sqlQuery = contentMap.get("sql_query");
if (sqlQuery != null){
return sqlQuery.toString();
}
Object query = contentMap.get("query");
if (query != null){
return query.toString();
}
return contentMap.toString();
}
content = content.replace("sql\n", "");
return content;
}
}
}
} catch (Exception e) {
log.error("解析JSON失败: {}", e.getMessage(), e);
}
return null;
}
/**
* 获取指定表的建表语句DDL
*
* @param databaseName 数据库名称
* @param tableNameStr 表名
* @return 建表语句的JSON字符串
*/
public String getTableDdl(String databaseName, String tableNameStr) {
// 干扰表白名单--屏蔽掉
List<String> whiteList = Arrays.asList("sys_role_dept", "sys_role_menu", "sys_oper_log", "file_export_template");
String[] split = tableNameStr.split(",");
StringBuilder stringBuilder = new StringBuilder();
List<String> sqlList = new ArrayList<>();
for (String tableName : split) {
// 屏蔽掉干扰表
if (whiteList.contains(tableName)) {
continue;
}
String sql = "SHOW CREATE TABLE `" + databaseName + "`.`" + tableName + "`";
sqlList.add(sql);
}
List<Map<String, Object>> resultList = executeSqlList(sqlList);
if (CollUtil.isNotEmpty(resultList)) {
for (Map<String, Object> mapRow : resultList) {
String createTableStatement = (String) mapRow.get("Create Table");
stringBuilder.append(createTableStatement);
}
return stringBuilder.toString();
}
return null;
}
/**
* 执行SQL语句并返回结果
*
* @param sqlList SQL语句
* @return 结果列表
*/
private List<Map<String, Object>> executeSqlList(List<String> sqlList) {
List<Map<String, Object>> resultList = new ArrayList<>();
try (Connection connection = DriverManager.getConnection(dbUrl, dbUsername, dbPassword);
Statement statement = connection.createStatement();
) {
for (String sql : sqlList) {
ResultSet resultSet = statement.executeQuery(sql);
int columnCount = resultSet.getMetaData().getColumnCount();
while (resultSet.next()) {
Map<String, Object> row = new HashMap<>();
for (int i = 1; i <= columnCount; i++) {
String columnName = resultSet.getMetaData().getColumnName(i);
Object columnValue = resultSet.getObject(i);
row.put(columnName, columnValue);
}
resultList.add(row);
}
}
} catch (Exception e) {
log.error("执行SQL失败: {}", e.getMessage(), e);
}
return resultList;
}
/**
* 通用执行Ai 生成的SQL
*
* @param sql sql
* @return List<Map < String, Object>>
*/
private List<Map<String, Object>> executeSql(String sql) {
List<Map<String, Object>> resultList = new ArrayList<>();
try (Connection connection = DriverManager.getConnection(dbUrl, dbUsername, dbPassword);
Statement statement = connection.createStatement();
ResultSet resultSet = statement.executeQuery(sql)) {
int columnCount = resultSet.getMetaData().getColumnCount();
while (resultSet.next()) {
Map<String, Object> row = new HashMap<>();
for (int i = 1; i <= columnCount; i++) {
String columnName = resultSet.getMetaData().getColumnName(i);
Object columnValue = resultSet.getObject(i);
row.put(columnName, columnValue);
}
resultList.add(row);
}
} catch (Exception e) {
log.error("执行SQL失败: {}", e.getMessage(), e);
}
return resultList;
}
/**
* sse调用
*/
@RequestMapping("/zhi_pu_say")
public SseEmitter testSseInvoke() {
return new SseEmitter();
}
}
效果>只有数据库里面有问题相关的表:就自动去找表,自动生成SQL:可以多张表单张表都可以哟
这里使用了多表联查的问题:
实际SQL :
SELECT d.dept_name FROM sys_user u JOIN sys_dept d ON u.dept_id = d.dept_id WHERE u.nick_name = ‘王力宏’
智普AI的返回的结果
{
"choices": [{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "\n{\n \"answer\": \"SELECT d.dept_name FROM sys_user u JOIN sys_dept d ON u.dept_id = d.dept_id WHERE u.nick_name = '王力宏'\"\n}\n",
"role": "assistant"
}
}],
"created": 1743241826,
"id": "20250329175024947ec2101b9e4442",
"model": "glm-4-flash",
"request_id": "guo_tong_1743241930598",
"usage": {
"completion_tokens": 46,
"prompt_tokens": 909,
"total_tokens": 955
}
}
这里再来秀一波 :用户昵称叫王多鱼的这个人的角色名称?
看看返回的
{
"choices": [{
"finish_reason": "stop",
"index": 0,
"message": {
"content": "\n{\n \"answer\": \"SELECT r.role_name FROM sys_user u INNER JOIN sys_user_role ur ON u.user_id = ur.user_id INNER JOIN sys_role r ON ur.role_id = r.role_id WHERE u.nick_name = '王多鱼'\"\n}\n",
"role": "assistant"
}
}],
"created": 1743245014,
"id": "202503291843319d1c4fe00dd94645",
"model": "glm-4-flash",
"request_id": "guo_tong_1743245117583",
"usage": {
"completion_tokens": 58,
"prompt_tokens": 943,
"total_tokens": 1001
}
}