大语言模型应用指南:自主Agent系统案例分析

大语言模型应用指南:自主Agent系统案例分析

文章目录


作者:禅与计算机程序设计艺术 / Zen and the Art of Computer Programming

1. 背景介绍

1.1 大语言模型的发展历程

1.1.1 早期的语言模型

早期的语言模型主要基于统计方法,例如N-gram模型,其原理是根据文本中词语出现的频率统计来预测下一个词语。这类模型简单易于实现,但缺乏对语言深层语义的理解,表达能力有限。

1.1.2 Transformer架构的突破

2017年,Google提出了Transformer架构,其核心是Self-Attention机制,能够捕捉句子中任意两个词语之间的语义关系,突破了传统循环神经网络的局限性。Transformer架构的出现极大地推动了自然语言处理领域的发展,成为构建大语言模型的基础。

1.1.3 预训练语言模型的崛起

随着计算能力的提升和数据量的爆炸式增长,预训练语言模型应运而生。通过在大规模语料库上进行预训练,模型可以学习到丰富的语言知识和世界知识,并在下游

03-28
### MCP API 的文档与使用教程 MCP 是一种用于增强大型语言模型 (LLM) 功能的技术框架,它通过提示(Prompts)、资源(Resources)以及工具(Tools)这三种核心原语来扩展 LLM 能力[^2]。Apifox 平台也认识到 MCP 技术在 API 开发领域的重要作用,并将其应用于实际场景中[^1]。 为了实现将 `/Users/syw/project/wechatAr` 文件夹下的所有文件上传至远程服务器 `47.93.xx.xx` 用户名 `root` 下的 `/opt/ll` 目录的操作,可以基于 MCP 工具功能构建一个自定义的服务逻辑。以下是具体实现方法: #### 实现方案 利用 SCP 命令完成文件传输任务,并结合 MCP 的 Tool 功能封装此操作以便于后续调用。当关键词为“上传微信目录”时,触发该工具执行相应动作。 ```python import subprocess def upload_wechat_directory(): source_dir = "/Users/syw/project/wechatAr/*" target_server = "root@47.93.xx.xx:/opt/ll/" try: result = subprocess.run(["scp", "-r", source_dir, target_server], check=True) return {"status": "success", "message": f"All files from {source_dir} have been uploaded to {target_server}"} except Exception as e: return {"status": "error", "message": str(e)} # 将上述函数注册为 MCP 中的一个 tool tools = { "upload_wechat_directory_tool": upload_wechat_directory, } # 定义 prompt 和 resource 配置部分省略... ``` 以上代码片段展示了如何创建一个名为 `upload_wechat_directory_tool` 的工具并将其集成到 MCP 系统里去[^3]。每当接收到匹配条件的消息比如含有特定关键字的时候就会激活对应的行为即启动SCP进程从而达成目标需求。 #### 进一步学习资料推荐 对于希望深入研究或者实践更多关于 MCP 应用案例的人士来说,《MCP 教程进阶篇》提供了丰富的实例分析和技术细节值得参考阅读;另外《MCP 极简入门:超快速上手运行简单的 MCP 服务和 MCP 客户端》同样是非常好的起点材料之一可以帮助初学者迅速掌握基础概念及其运作机制。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值