Transferable knowledge transfer for recommender systems

本文探讨了如何在推荐系统中应用可转移的知识迁移,利用大数据和人工智能技术提升模型性能。通过Java和Python实现的架构设计,展示了如何有效地将知识从一个环境迁移到另一个,以改善个性化推荐的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.背景介绍

Recommender Systems (RSs), also known as collaborative filtering RSs, are widely used in various applications such as e-commerce platforms, music streaming services, social networking sites etc., where the users’ preferences towards different items or products can be inferred from their past interactions with other users or system generated content. However, a significant challenge is to transfer the learned user preferences from one application context to another application context where they might be slightly different due to differences in environmental conditions, interests, culture, personalities, age groups, and many others. To address this issue, recent research has focused on learning transferable representations of user prefe

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值