Spark Streaming实时流式数据处理

Apache Spark Streaming 是高吞吐量、容错的流处理引擎,使用微批次处理实时数据,支持多种数据源。本文介绍了Spark Streaming的基本概念如DStream、微批次、窗口等,以及架构设计、特点、应用场景,还展示了如何处理Kafka和ClickHouse的日志数据。此外,文章对比了Spark Streaming与Structured Streaming的架构和优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

Apache Spark Streaming 是 Apache Spark 提供的一个用于高吞吐量、容错的流式数据处理引擎。它可以实时的接收数据并在系统内部以微批次的方式进行处理,并将结果输出到文件、数据库或实时消息系统中。Spark Streaming 支持 Java、Scala 和 Python 编程语言。本文将详细介绍 Spark Streaming 的相关原理及功能特性,包括其核心概念和术语、架构设计、主要组件及应用场景等。最后,通过实际案例展示如何在 Hadoop Yarn 上部署和运行 Spark Streaming 流程,并对比 Spark Structured Streaming 对实时流式数据分析的优缺点。

文章假定读者具有一定的编程能力,并且熟悉 Hadoop MapReduce 或 Spark 基本的 API 操作。对于 Java 开发人员来说,还需要掌握 Java 多线程编程模型和集合框架等知识。

2.基本概念和术语

2.1 Apache Spark Streaming概述

Apache Spark Streaming 是 Apache Spark 提供的一个用于高吞吐量、容错的流式数据处理引擎。它可以实时的接收数据并在系统内部以微批次的方式进行处理,并将结果输出到文件、数据库或实时消息系统中。Spark Streaming 使用反应式数据流(Reactive Data Stream)编程模型,它允许对实时输入的数据进行快速地、批量地、增量地处理。

Spark Strea

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值