Attention Is All You Need: Transformer 模型解读

Transformer模型通过自注意力机制,降低了计算复杂度,适用于序列数据处理。文章深入讲解了Transformer的结构,包括标准Attention机制、Multi-head Attention、Positional Encoding,并介绍了实验验证,展示在GLUE等数据集上的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

Attention Is All You Need (A-Transformer)是一种全新的自注意力机制的网络结构,其特点在于将计算复杂度从O(N2)O(N^2)O(N

评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值