题目:
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
分析:
解决这个问题的关键点在于构造一个双向链表,可以做到快速移动节点。
LRU Cache可以利用双向链表和HashMap进行实现。HashMap使得get(key)操作的时间复杂度为O(1)。双向链表使得移动和删除操作的时间复杂度为O(1)。
代码:
import java.util.HashMap;
class Node {
int key;
int value;
Node pre;
Node next;
public Node(int key, int value) {
this.key = key;
this.value = value;
}
}
public class LRUCache {
int capacity;
HashMap<Integer, Node> map = new HashMap<Integer, Node>();
Node head = null;
Node end = null;
public LRUCache(int capacity) {
this.capacity = capacity;
}
public int get(int key) {
if(map.containsKey(key)) {
Node n = map.get(key);
remove(n);
setHead(n);
return n.value;
}
return -1;
}
public void remove(Node n) {
if(n.pre != null) {
n.pre.next = n.next;
} else {
head = n.next;
}
if(n.next != null) {
n.next.pre = n.pre;
} else {
end = n.pre;
}
}
public void setHead(Node n) {
n.next = head;
n.pre = null;
if(head != null)
head.pre = n;
head = n;
if(end == null)
end = head;
}
public void set(int key, int value) {
if(map.containsKey(key)) {
Node old = map.get(key);
old.value = value;
remove(old);
setHead(old);
} else {
Node created = new Node(key, value);
if(map.size() >= capacity) {
map.remove(end.key);
remove(end);
setHead(created);
} else {
setHead(created);
}
map.put(key, created);
}
}
}