红黑树2 完结

// 红黑树2.cpp : 此文件包含 “main” 函数。程序执行将在此处开始并结束。
//
//
//#include
//
//int main()
//{
// std::cout << “Hello World!\n”;
//}

// 运行程序: Ctrl + F5 或调试 >“开始执行(不调试)”菜单
// 调试程序: F5 或调试 >“开始调试”菜单

// 入门使用技巧:
// 1. 使用解决方案资源管理器窗口添加/管理文件
// 2. 使用团队资源管理器窗口连接到源代码管理
// 3. 使用输出窗口查看生成输出和其他消息
// 4. 使用错误列表窗口查看错误
// 5. 转到“项目”>“添加新项”以创建新的代码文件,或转到“项目”>“添加现有项”以将现有代码文件添加到项目
// 6. 将来,若要再次打开此项目,请转到“文件”>“打开”>“项目”并选择 .sln 文件

#include
using namespace std;
//map 和set
template
struct RBNode
{
typedef bool color;
RBNode* _parent;
RBNode* _left;
RBNode* _right;
//key-value
//键值对出现的。
v _val;
//颜色
COLOR _color;

RBNode(const v& val = v())
	:_parent(nullptr)
	, _left(nullptr)
	, _right(nullptr)
	, _kv(kv)
	, _color(RED)
{}

};

template <class k, class v,class keyofvalue>
class RBTree
{
typedef RBTree Node;

RBTree()
	:_header(new Node)
{
	//创建头结点。
	//创建的就是结构的方便是为了解决的是迭代器的实现
	//创建空树
		//类似于之前带头的循环链表的结构。
	_header->_left = _header->_right = _header;
}
//红黑树的插入的时候就是主要是红的不能连续。
bool insert(const v& v)
{
	//1.搜索树的插入
		//空树:_header->_parent:nullptr
	if (_header->_parent == nullptr)
	{
		//创建根节点
		Node* root = new Node(v);

		_header->_parent = root;
		root->_parent = _header;
		_header->_left = _header->_right = root;

		//设置根节点是黑色
		root->_color = BLACK;
		return true;
	}
	//从根节点开始搜索
	Node* cur = _header->_parent;
	Node* parent = nullptr;
	keyofvalue kov;
	while (cur)
	{
		parent = cur;
		//和key值进行比较
		//if (cur->_val.first == val.first)
		if(kov(cur->_val)==kov(val))
		{
			//key 是不能重复的
			return false;
		}
		//else if (cur->_val.first > val.first)
		else if(kov(cur->val)>kov(cur->val))
		{
			cur = cur->_left;
		}
		else
		{
			cur = cur->_right;
		}
	}
	//创建待插入的节点
	cur = new Node(val);
	if (parent->_val.first > cur->_val.first)
		parent->_left = cur;
	else
		parent->_right = cur;
	cur->_parent = parent;
	//2.修改颜色或者调整结构
	//是否有红色连续的节点
	while (cur != _header->_parent&&cur->_parent->_color == RED)
	{
		parent = cur->_parent;
		Node* gfather = parent->_parent;

		if (gfather->_left == parent)
		{
			Node* uncle = gfather->_right;
			//1.uncle存在的,并且是红色的
			if (uncle&&uncle->_color == RED)
			{
				parent->_color = uncle->_color = BLACK;
				gfather->_color = RED;
				//继续更新
				cur = gfather;
			}
		}
		else
		{
			//判断是否是双旋场景
			if (cur == parent->_right)
			{
				//左旋
				RotateL(parent)
					//交换cur,parent指向,退化成右旋的场景
					swap(cur, parent);
			}
			//右旋
			RotateR(gfather);
			parent->_color = BLACK;
			gfather->_color = RED;
			break;
		}
	}
	else
	{
		//gfather->right=parent
		//判断是否是双旋场景
		//如果是那就是右左双旋
		Node* uncle = gfather->_left;
		if (uncle&&uncle->_color == RED)
		{
			parent->_color = uncle->_color = BLACK;
			gfather->_color = RED;
			cur = gfather;
		}
		else
		{
			if (cur == parent->_left)
			{
				//右旋
				RotateR(parent)
					//交换cur,parent指向,退化成右旋的场景
					swap(cur, parent);
			}
			//左旋
			RotateL(parent);
			parent->_color = BLACK;
			gfather->_color = RED;
			break;
		}
	}
	//根节点的颜色改成黑色
	_header->_parent->_color = BLACK;
	//更新header的左右指向
	_header->_left = leftMost();
	_header->_right = rightMost();
}

//左旋转
//parent
//               subR
//     subRL
void RotateL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	subR->_left = parent;
	parent->_right = subRL;
	if (subRL)
		subRL->_parent = parent;
	//判断根
	if (parent == _header->_parent)
	{
		_header->_parent = subR;
		subR->_parent = _header;
	}
	else
	{
		Node* pparent = parent->_parent;
		if (pparent->_left = parent)
			pparent->_left = subR;
		else
			pparent->_right = subR;
		subR->_parent = pparent;
	}
	parent->_parent = subR;
}
//右旋转
//位置关系
//                parent
//subL
//           subLR
void RotateR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	subL->_right = subLR;
	parent->_left = subL;
	if (subLR)
		subLR->_parent = parent;
	//判断根
	if (parent == _header->_parent)
	{
		_header->_parent = subL;
		subL->_parent = _header;
	}
	else
	{
		Node* pparent = parent->_parent;
		if (pparent->_left == parent)
			pparent->_left = subL;
		else
			pparent->_right == subL;
		subL->_parent = pparent;

	}
	parent->_parent = subL;
}

void inorder()
{
	_inorder(_header->_parent)
		cout << endl;
}
void _inorder(Node* root)
{
	if (root)
	{
		_inorder(root->_left);
		cout << root->_kv.first << " ";
		_inorder(root->_right);
	}
}
Node* leftMost()
{
	Node* cur = _header->_parent;
	while (cur&&cur->_right)
	{
		cur = cur->_right;
	}
	return cur;
}
//红黑树:
//1.根:黑色
//2.每条路径黑色个数相同
//3.红色不能相同
//成员:header
bool isBalance()
{
	if (_header->_parent == nullptr)
		return true;
	Node* root = _header->_parent;

	if (root->_color == RED)
		return false;
	//统计一条路径上的黑色结点的个数
	int bCount = 0;
	Node* cur = root;
	while (cur)
	{
		if (cur->_color == BLACK)
			++bCount;
		cur = cur->_left;
	}

	//遍历每一条路径
	int curBCount = 0;
	return isBalance(root, bCount, curBCount);
}

bool _isBalance(Node* root, int& bCount, int curBCount)
{
	//当root为空时,一条路径遍历结束
	if (root == nullptr)
	{
		//判断和黑色结点个数是否相同
		if (curBCount != bCount)
			return false;
		else
			return true;
	}
	//判断当前节点是否是黑色
	if (root->_color == BLACK)
		++curBCount;

	//判断是否有红色连续的节点
	if (root->_parent&&root->_color == RED && root->_parent->_color == RED)

	{
		cout << "data:" << root->_kv.first << endl;
		return false;
	}
	return _isBalance(root->_left, bCount, curBCount) && _isBalance(root->_right, bCount, curBCount);
}

private:
Node* _header;
};

//map实现
template <class k,class T>
class Map
{
struct MapkeyofValue
{
const K& operator() (const pair<k,v>& val)
};

public:
bool insert(const pair<k, T>& kv)
{
_rbt.insert(kv);
}
v& operator[](const pair<k, v>& kv)
{
bool
}
private:
typedef RBTree<k, pair<k, T>> rbt;
rbt _rbt;
};

//set 实现
template
class set
{
public:
bool insert(const pair<k, T>& kv)
{
_rbt.insert(kv);
}

private:
typedef RBTree<k, pair<k, T>> rbt;
rbt _rbt;
};
void test()
{
Map<int, int> m;
m.insert(make_pair(1, 1));
m.insert(make_pair(1, 1));
m.insert(make_pair(1, 1));
}

int main()
{
test();
return 0;

}

//红黑树
//双旋就是表示的是高度差是不在一边的操作。例如是左边的右边高之类的。
//每条路径上黑色个数是相同的。

#include
#include
using namespace std;
//使用的是内置类型颜色
enum COLOR
{
BLACK,
RED
}

template <class k, class v>
struct RBNode
{
typedef bool color;
RBNode<k, v>* _parent;
RBNode<k, v>* _left;
RBNode<k, v>* _right;
//key-value
//键值对出现的。
pair<k,v> _kv;
//颜色
COLOR _color;

RBNode(const pair<k, v>& kv = pair<k, v>())
	:_parent(nullptr)
	, _left(nullptr)
	, _right(nullptr)
	, _kv(kv)
	, _color(RED)
{}

};

template <class k,class v>
class RBTree
{
typedef RBTree<k, v> Node;

RBTree()
	:_header(new Node)
{
//创建头结点。
//创建的就是结构的方便是为了解决的是迭代器的实现
//创建空树
	//类似于之前带头的循环链表的结构。
	_header->_left = _header->_right = _header;
}
//红黑树的插入的时候就是主要是红的不能连续。
bool insert(const pair<k, v>& kv)
{
//1.搜索树的插入
	//空树:_header->_parent:nullptr
	if (_header->_parent == nullptr)
	{
		//创建根节点
		Node* root = new Node(kv);

		_header->_parent = root;
		root->_parent = _header;
		_header->_left = _header->_right = root;

		//设置根节点是黑色
		root->_color = BLACK;
		return true;
	}
	//从根节点开始搜索
	Node* cur = _header->_parent;
	Node* parent = nullptr;
	while (cur)
	{
		parent = cur;
		//和key值进行比较
		if (cur->_kv.first == kv.first)
		{
			//key 是不能重复的
			return false;
		}
		else if (cur->_kv.first > kv.first)
		{
			cur = cur->_left;
		}
		else
		{
			cur = cur->_right;
		}
	}
	//创建待插入的节点
	cur = new Node(kv);
	if (parent->_kv.first > cur->_kv.first)
		parent->_left = cur;
	else
		parent->_right = cur;
	cur->_parent = parent;
	//2.修改颜色或者调整结构
	//是否有红色连续的节点
	while (cur != _header->_parent&&cur->_parent->_color == RED)
	{
		parent = cur->_parent;
		Node* gfather = parent->_parent;

		if (gfather->_left == parent)
		{
			Node* uncle = gfather->_right;
			//1.uncle存在的,并且是红色的
			if (uncle&&uncle->_color == RED)
			{
				parent->_color = uncle->_color = BLACK;
				gfather->_color = RED;
				//继续更新
				cur = gfather;
			}
		}
		else
		{
			//判断是否是双旋场景
			if (cur == parent->_right)
			{
				//左旋
				RotateL(parent)
					//交换cur,parent指向,退化成右旋的场景
				swap(cur, parent);
			}
			//右旋
			RotateR(gfather);
			parent->_color = BLACK;
			gfather->_color = RED;
			break;
		}
	}
	else
	{
		//gfather->right=parent
		//判断是否是双旋场景
		//如果是那就是右左双旋
		Node* uncle = gfather->_left;
		if (uncle&&uncle->_color == RED)
		{
			parent->_color = uncle->_color = BLACK;
			gfather->_color = RED;
			cur = gfather;
		}
		else
		{
      if (cur == parent->_left)
		{
			//右旋
			RotateR(parent)
				//交换cur,parent指向,退化成右旋的场景
				swap(cur, parent);
		}
       //左旋
		RotateL(parent);
		parent->_color = BLACK;
		gfather->_color = RED;
		break;
		}
	}
	//根节点的颜色改成黑色
	_header->_parent->_color = BLACK;
	//更新header的左右指向
	_header->_left = leftMost();
	_header->_right = rightMost();
}

//左旋转
//parent
//               subR
//     subRL
void RotateL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	subR->_left = parent;
	parent->_right = subRL;
	if (subRL)
		subRL->_parent = parent;
	//判断根
	if (parent == _header->_parent)
	{
		_header->_parent = subR;
		subR->_parent = _header;
	}
	else
	{
		Node* pparent = parent->_parent;
		if (pparent->_left = parent)
			pparent->_left = subR;
		else
			pparent->_right = subR;
		subR->_parent = pparent;
	}
	parent->_parent = subR;
}
//右旋转
//位置关系
//                parent
//subL
//           subLR
void RotateR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	subL->_right = subLR;
	parent->_left = subL;
	if (subLR)
		subLR->_parent = parent;
	//判断根
	if (parent == _header->_parent)
	{
		_header->_parent = subL;
		subL->_parent = _header;
	}
	else
	{
		Node* pparent = parent->_parent;
		if (pparent->_left == parent)
			pparent->_left = subL;
		else
			pparent->_right == subL;
		subL->_parent = pparent;

	}
	parent->_parent = subL;
}

void inorder()
{
	_inorder(_header->_parent)
		cout << endl;
}
void _inorder(Node* root)
{
	if (root)
	{
		_inorder(root->_left);
		cout << root->_kv.first << " ";
		_inorder(root->_right);
	}
}
Node* leftMost()
{
	Node* cur = _header->_parent;
	while (cur&&cur->_right)
	{
		cur = cur->_right;
	}
	return cur;
}
//红黑树:
//1.根:黑色
//2.每条路径黑色个数相同
//3.红色不能相同
//成员:header
bool isBalance()
{
	if (_header->_parent == nullptr)
		return true;
	Node* root = _header->_parent;

	if (root->_color == RED)
		return false;
	//统计一条路径上的黑色结点的个数
	int bCount = 0;
	Node* cur = root;
	while (cur)
	{
		if (cur->_color == BLACK)
			++bCount;
		cur = cur->_left;
	}

	//遍历每一条路径
	int curBCount = 0;
	return isBalance(root, bCount, curBCount);
}

bool _isBalance(Node* root, int& bCount, int curBCount)
{
//当root为空时,一条路径遍历结束
	if (root == nullptr)
	{
		//判断和黑色结点个数是否相同
		if (curBCount != bCount)
			return false;
		else
			return true;
	}
	//判断当前节点是否是黑色
	if (root->_color == BLACK)
		++curBCount;

	//判断是否有红色连续的节点
	if (root->_parent&&root->_color == RED && root->_parent->_color == RED)

	{
		cout << "data:" << root->_kv.first << endl;
		return false;
	}
	return _isBalance(root->_left, bCount, curBCount) && _isBalance(root->_right, bCount, curBCount);
}
private:
	Node* _header;

};

void test()
{
RBTree<int, int> rbt;
rbt.insert(make_pair(10, 10));
rbt.insert(make_pair(15, 15));
rbt.insert(make_pair(5, 5));
rbt.insert(make_pair(2, 2));
}

void test1()
{
RBTree<int, int> rbt;
int n;
cin >> n;
for (int i = n; i > 0; --i)
{
rbt.insert(make_pair(i, i));
}
rbt.inorder();
cout << rbt.isBalance() << endl;
}
int main()
{

test();
test1();
return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值