【最小费用最大流】E - Minimum Cost POJ - 2516

本文深入探讨了最小成本流算法的实现细节,通过一个具体的运输问题案例,详细讲解了如何利用该算法在满足供应和需求约束下,找到总运输成本最低的货物分配方案。文章涵盖了算法的基本原理、数据结构设计、关键步骤以及代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Minimum Cost

Time Limit: 4000MS Memory Limit: 65536K
Total Submissions: 18195 Accepted: 6417

Description

Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport. 

It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.

Input

The input consists of multiple test cases. The first line of each test case contains three integers N, M, K (0 < N, M, K < 50), which are described above. The next N lines give the shopkeepers' orders, with each line containing K integers (there integers are belong to [0, 3]), which represents the amount of goods each shopkeeper needs. The next M lines give the supply places' storage, with each line containing K integers (there integers are also belong to [0, 3]), which represents the amount of goods stored in that supply place. 

Then come K integer matrices (each with the size N * M), the integer (this integer is belong to (0, 100)) at the i-th row, j-th column in the k-th matrix represents the cost to transport one unit of k-th goods from the j-th supply place to the i-th shopkeeper. 

The input is terminated with three "0"s. This test case should not be processed.

Output

For each test case, if Dearboy can satisfy all the needs of all the shopkeepers, print in one line an integer, which is the minimum cost; otherwise just output "-1".

Sample Input

1 3 3   
1 1 1
0 1 1
1 2 2
1 0 1
1 2 3
1 1 1
2 1 1

1 1 1
3
2
20

0 0 0

Sample Output

4
-1

Source

POJ Monthly--2005.07.31, Wang Yijie

 

 

#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
#include <queue>
#include <cmath>
#define P pair<int, int>
using namespace std;

const int inf = 0x7fffffff;
const int mn = 110;

struct edge
{
	int to, cap, cost, rev;
};
vector<edge> G[mn];
void addedge (int u, int v, int w, int f)
{
	edge e;
	e.to = v, e.cap = w, e.cost = f, e.rev = (int) G[v].size();
	G[u].push_back (e);
	e.to = u, e.cap = 0, e.cost = -f, e.rev = (int) G[u].size() - 1;
	G[v].push_back ( e );
}

int h[mn];
int dis[mn];
int preve[mn], prevv[mn];  /// 前驱结点及对应边
int min_cost_flow (int s, int t, int f)
{
	int res = 0;
	memset (h, 0, sizeof h);
	while (f > 0) /// dijkstra 更新h
	{
		priority_queue<P, vector<P>, greater<P> > que;
		for ( int i = 0; i <= mn; i++ )
			dis[i] = inf;
		dis[s] = 0;
		que.push (P (0, s));
		while (!que.empty())
		{
			P p = que.top();
			que.pop();
			if (dis[p.second] < p.first)
				continue;
			int v = p.second;
			for (int i = 0; i < ( int ) G[v].size(); i++)
			{
				edge &e = G[v][i];
				if (e.cap > 0 && dis[e.to] > dis[v] + e.cost + h[v] - h[e.to])
				{
					dis[e.to] = dis[v] + e.cost + h[v] - h[e.to];
					prevv[e.to] = v;
					preve[e.to] = i;
					que.push (P (dis[e.to], e.to ));
				}
			}
		}

		/// 无法增广 得到答案
		if (dis[t] == inf)
			return -1;
		for (int i = 1; i <= mn; i++)
			h[i] += dis[i];
		int d = f;
		for (int v = t; v != s; v = prevv[v])
			d = min (d, G[prevv[v]][preve[v]].cap);

		f -= d;
		res += d * h[t];
		for (int v = t; v != s; v = prevv[v])
		{
			edge &e = G[prevv[v]][preve[v]];
			e.cap -= d;
			G[v][e.rev].cap += d;
		}
	}
	return res;
}

int xu[55][55], gong[55][55], pay[55][55][55];
int main()
{
	freopen ( "D:\\in.txt", "r", stdin );

	int n, m, k;
	while (~scanf ("%d %d %d", &n, &m, &k) && (n || m || k))
	{
		for (int i = 1; i <= n; i++)
			for (int j = 1; j <= k; j++)
			scanf("%d", &xu[i][j]);
		for (int i = 1; i <= m; i++)
			for (int j = 1; j <= k; j++)
			scanf("%d", &gong[i][j]);
		for (int i = 1; i <= k; i++)
			for (int p = 1; p <= n; p++)
				for (int q = 1; q <= m; q++)
				scanf("%d", &pay[i][p][q]);

		int res = 0;
		int st = 0, ed = 101;
		for (int K = 1; K <= k; K++)  /// 分别求K次最小费用最大流
		{
			for (int i = 0; i <= mn; i++)
				G[i].clear();

			int sum = 0;
			for (int i = 1; i <= n; i++)
			{
				sum += xu[i][K];
				addedge(st, i, xu[i][K], 0);
			}
			for (int i = 1; i <= m; i++)
				addedge(50 + i, ed, gong[i][K], 0);
			for (int i = 1; i <= n; i++)
				for (int j = 1; j <= m; j++)
				addedge(i, 50 + j, inf, pay[K][i][j]);

			int Q = min_cost_flow(st, ed, sum);
			if (Q == -1)
			{
				res = -1;
				break;
			}
			else
				res += Q;
		}

		printf("%d\n", res);
	}
	return 0;
}

///每个店拆k个点 TLE
/*
int s = 0, t = 5500;
for (int i = 1; i <= m; i++)
	addedge(s, i, inf, 0);
for (int i = 1; i <= n; i++)
	addedge(5100 + i, t, inf, 0);

int sum = 0;  // 商店需求总数
for (int i = 1; i <= n; i++)
{
	for (int j = 1; j <= k; j++)
	{
		int a;
		scanf("%d", &a);
		sum += a;
		addedge(2600 + 50 * (i - 1) + j, 5100 + i, a, 0);
	}
}

for (int i = 1; i <= m; i++)
{
    for (int j = 1; j <= k; j++)
    {
        int a;
        scanf("%d", &a);
        addedge(i, 50 + 50 * (i - 1) + j, a, 0);
    }
}

for (int i = 1; i <= k; i++)
{
    for (int p = 1; p <= n; p++)
    {
        for (int q = 1; q <= m; q++)
        {
            int a;
            scanf("%d", &a);
            addedge(50 + 50 * (q - 1) + i, 2600 + 50 * (p - 1) + i, inf, a);
        }
    }
}

printf("%d\n", min_cost_flow(s, t, sum));
*/

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值