Building Shops

本文介绍了一种解决糖果店布局问题的算法,目标是最小化总成本。问题设定为在一维教室线上建立糖果店,考虑了建立糖果店的成本及没有糖果店的教室到左侧最近糖果店的距离成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HDU’s n classrooms are on a line ,which can be considered as a number line. Each classroom has a coordinate. Now Little Q wants to build several candy shops in these n classrooms.

The total cost consists of two parts. Building a candy shop at classroom i would have some cost ci. For every classroom P without any candy shop, then the distance between P and the rightmost classroom with a candy shop on P
's left side would be included in the cost too. Obviously, if there is a classroom without any candy shop, there must be a candy shop on its left side.

Now Little Q wants to know how to build the candy shops with the minimal cost. Please write a program to help him.
Input The input contains several test cases, no more than 10 test cases.
In each test case, the first line contains an integer n(1n3000), denoting the number of the classrooms.
In the following n lines, each line contains two integers xi,ci(109xi,ci109), denoting the coordinate of the i-th classroom and the cost of building a candy shop in it.
There are no two classrooms having same coordinate. Output For each test case, print a single line containing an integer, denoting the minimal cost. Sample Input
3
1 2
2 3
3 4
4
1 7
3 1
5 10
6 1
Sample Output
5
11
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll inf=1ll<<60;
#define P pair<int,int>
const int N=3000+10;

P p[N];

ll dp[N][N];

int main(){
    ios_base::sync_with_stdio(0);
    cin.tie(0);
    cout.tie(0);
    //freopen("in.txt","r",stdin);
    //cout<<"1"<<endl;
    int n;
    set<P> s;
    while(cin>>n){
        for(int i=1;i<=n;i++){
            int x,y;
            cin>>x>>y;
            p[i]=P(x,y);
        }
        sort(p+1,p+1+n);
        dp[1][1]=p[1].second;
        for(int i=2;i<=n;i++){
            for(int j=1;j<i;j++)
                dp[i][j]=dp[i-1][j]+p[i].first-p[j].first;
            dp[i][i]=inf;
            for(int j=1;j<i;j++)
            dp[i][i]=min(dp[i][i],dp[i-1][j]+p[i].second);
        }
        ll ans=inf;
        for(int i=1;i<=n;i++)
        ans=min(ans,dp[n][i]);
        cout<<ans<<endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值