Deleting Edges

本博客介绍了一个关于图论的游戏挑战,玩家需要通过删除特定边来构造一棵树,使得树上任意节点到根节点的距离等于原始图中两节点间的最短路径长度。文章详细解释了游戏规则,并提供了一个示例输入输出及解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Little Q is crazy about graph theory, and now he creates a game about graphs and trees.
There is a bi-directional graph with n nodes, labeled from 0 to n1. Every edge has its length, which is a positive integer ranged from 1 to 9.
Now, Little Q wants to delete some edges (or delete nothing) in the graph to get a new graph, which satisfies the following requirements:
(1) The new graph is a tree with n1 edges.
(2) For every vertice v(0<v<n), the distance between 0 and v on the tree is equal to the length of shortest path from 0 to v in the original graph.
Little Q wonders the number of ways to delete edges to get such a satisfied graph. If there exists an edge between two nodes i and j, while in another graph there isn't such edge, then we regard the two graphs different.
Since the answer may be very large, please print the answer modulo 109+7
.
Input The input contains several test cases, no more than 10 test cases.
In each test case, the first line contains an integer n(1n50), denoting the number of nodes in the graph.
In the following n lines, every line contains a string with n characters. These strings describes the adjacency matrix of the graph. Suppose the j-th number of the i-th line is c(0c9), if c is a positive integer, there is an edge between i and j with length of c, if c=0, then there isn't any edge between i and j.
The input data ensure that the i-th number of the i-th line is always 0, and the j-th number of the i-th line is always equal to the i-th number of the j-th line. Output For each test case, print a single line containing a single integer, denoting the answer modulo 109+7. Sample Input
2
01
10
4
0123
1012
2101
3210
Sample Output
1
6
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N=55,inf=1e8,mod=1e9+7;

char s[N];
int a[N][N],dis[N][N];

int main(){
    //ios_base::sync_with_stdio(0);
    //cin.tie(0);
    //cout.tie(0);
    //freopen("in.txt","r",stdin);
    //cout<<"1"<<endl;
    int n;
    while(cin>>n){
        for(int i=1;i<=n;i++){
            scanf("%s",s+1);
            for(int j=1;j<=n;j++){
                a[i][j]=s[j]-'0';
                if(a[i][j]==0)a[i][j]=inf;
            }
        }

        //puts()
        for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        dis[i][j]=a[i][j];

        for(int k=1;k<=n;k++)
        for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
        if(dis[i][j]>dis[i][k]+dis[k][j])
        dis[i][j]=dis[i][k]+dis[k][j];

        ll ans=1;
        dis[1][1]=0;
        for(int i=2;i<=n;i++){
            int cnt=0;
            for(int j=1;j<=n;j++)
                if(dis[1][j]+a[j][i]==dis[1][i])cnt++;
            ans=ans*cnt%mod;
        }
        printf("%d\n",ans);

    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值