| Time Limit: 2 second(s) | Memory Limit: 32 MB |
By definition palindrome is a string which is not changed when reversed. "MADAM" is a nice example of palindrome. It is an easy job to test whether a given string is a palindrome or not. But it may not be so easy to generate a palindrome.
Here we will make a palindrome generator which will take an input string and return a palindrome. You can easily verify that for a string of length n, no more than (n - 1) characters are required to make it a palindrome. Consider "abcd" and its palindrome "abcdcba" or "abc" and its palindrome "abcba". But life is not so easy for programmers!! We always want optimal cost. And you have to find the minimum number of characters required to make a given string to a palindrome if you are only allowed to insert characters at any position of the string.
Input
Input starts with an integer T (≤ 200), denoting the number of test cases.
Each case contains a string of lowercase letters denoting the string for which we want to generate a palindrome. You may safely assume that the length of the string will be positive and no more than 100.
Output
For each case, print the case number and the minimum number of characters required to make string to a palindrome.
Sample Input | Output for Sample Input |
| 6 abcd aaaa abc aab abababaabababa pqrsabcdpqrs | Case 1: 3 Case 2: 0 Case 3: 2 Case 4: 1 Case 5: 0 Case 6: 9 |
题意:插入最少字符使得原串变成回文串
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<set>
#include<map>
#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)
#define bug printf("hihi\n")
#define eps 1e-8
typedef long long ll;
using namespace std;
#define INF 0x3f3f3f3f
#define N 105
int len;
char c[N];
int dp[N][N];
void DP()
{
int i,j;
memset(dp,0,sizeof(dp));
for(int i=len-1;i>=0;i--)
for(int j=i+1;j<len;j++)
{
dp[i][j]=min(dp[i][j-1],dp[i+1][j])+1;
if(c[i]==c[j]) dp[i][j]=min(dp[i+1][j-1],dp[i][j]);
}
}
int main()
{
int i,j,t,ca=0;
scanf("%d",&t);
while(t--)
{
scanf("%s",c);
len=strlen(c);
DP();
printf("Case %d: %d\n",++ca,dp[0][len-1]);
}
return 0;
}
本文介绍了一种算法,该算法能够确定将任意给定字符串转换为回文串所需的最少字符插入数量。通过动态规划的方法,文章详细解释了如何计算这一最小成本,并提供了一个具体的实现案例。

1025

被折叠的 条评论
为什么被折叠?



