CF# 149 D Coloring Brackets(区间dp)

本文探讨了如何对正确括号序列进行染色的问题,旨在找出所有可能的染色方式,使得任意一对匹配的括号中仅有一个被染色,并且相邻染色括号颜色不同。文中提供了一种动态规划的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D - Coloring Brackets
Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u

Description

Once Petya read a problem about a bracket sequence. He gave it much thought but didn't find a solution. Today you will face it.

You are given string s. It represents a correct bracket sequence. A correct bracket sequence is the sequence of opening ("(") and closing (")") brackets, such that it is possible to obtain a correct mathematical expression from it, inserting numbers and operators between the brackets. For example, such sequences as "(())()" and "()" are correct bracket sequences and such sequences as ")()" and "(()" are not.

In a correct bracket sequence each bracket corresponds to the matching bracket (an opening bracket corresponds to the matching closing bracket and vice versa). For example, in a bracket sequence shown of the figure below, the third bracket corresponds to the matching sixth one and the fifth bracket corresponds to the fourth one.

You are allowed to color some brackets in the bracket sequence so as all three conditions are fulfilled:

  • Each bracket is either not colored any color, or is colored red, or is colored blue.
  • For any pair of matching brackets exactly one of them is colored. In other words, for any bracket the following is true: either it or the matching bracket that corresponds to it is colored.
  • No two neighboring colored brackets have the same color.

Find the number of different ways to color the bracket sequence. The ways should meet the above-given conditions. Two ways of coloring are considered different if they differ in the color of at least one bracket. As the result can be quite large, print it modulo 1000000007 (109 + 7).

Input

The first line contains the single string s (2 ≤ |s| ≤ 700) which represents a correct bracket sequence.

Output

Print the only number — the number of ways to color the bracket sequence that meet the above given conditions modulo 1000000007 (109 + 7).

Sample Input

Input
(())
Output
12
Input
(()())
Output
40
Input
()
Output
4

Hint

Let's consider the first sample test. The bracket sequence from the sample can be colored, for example, as is shown on two figures below.

The two ways of coloring shown below are incorrect.


参考链接:http://blog.youkuaiyun.com/sdjzping/article/details/19160013




#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<set>
#include<map>


#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)

#define eps 1e-8
typedef __int64 ll;

#define fre(i,a,b)  for(i = a; i <b; i++)
#define free(i,b,a) for(i = b; i >= a;i--)
#define mem(t, v)   memset ((t) , v, sizeof(t))
#define ssf(n)      scanf("%s", n)
#define sf(n)       scanf("%d", &n)
#define sff(a,b)    scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf          printf
#define bug         pf("Hi\n")

using namespace std;

#define mod 1000000007
#define INF 0x3f3f3f3f
#define N 705

ll dp[N][N][3][3];
char c[N];
int to[N];
int len;

void inint()
{
	int i,j,p=0;
	int t[N];
	for(i=0;i<len;i++)
		if(c[i]=='(')
		  t[p++]=i;
		else
		{
			to[i]=to[t[p-1]];
			to[t[p-1]]=i;
			p--;
		}
}

void dfs(int le,int ri)
{
     if(le>=ri) return ;

     if(le+1==ri)
	 {
	 	dp[le][ri][0][1]=1;
	 	dp[le][ri][1][0]=1;
	 	dp[le][ri][0][2]=1;
	 	dp[le][ri][2][0]=1;
	 	return ;
	 }
     int i,j;

     if(to[le]==ri)
	 {
	 	dfs(le+1,ri-1);
	 	for(i=0;i<3;i++)
			for(j=0;j<3;j++)
		   {
			   if(j!=1)
			    dp[le][ri][0][1]=(dp[le][ri][0][1]+dp[le+1][ri-1][i][j])%mod;
			   if(i!=1)
				dp[le][ri][1][0]=(dp[le][ri][1][0]+dp[le+1][ri-1][i][j])%mod;
			   if(j!=2)
			    dp[le][ri][0][2]=(dp[le][ri][0][2]+dp[le+1][ri-1][i][j])%mod;
			   if(i!=2)
				dp[le][ri][2][0]=(dp[le][ri][2][0]+dp[le+1][ri-1][i][j])%mod;
		   }
	   return ;
	 }
	 int p=to[le];
	 dfs(le,p);
	 dfs(p+1,ri);
	 int ii,jj;
	 for(i=0;i<3;i++)
		for(j=0;j<3;j++)
		  for(ii=0;ii<3;ii++)
		     for(jj=0;jj<3;jj++)
		 {
			 if(j==1&&ii==1||j==2&&ii==2) continue;
			 dp[le][ri][i][jj]=(dp[le][ri][i][jj]+(dp[le][p][i][j]*dp[p+1][ri][ii][jj])%mod)%mod;
		 }
}

int main()
{
     int i,j;
     while(~scanf("%s",c))
	 {
	    len=strlen(c);
	 	inint();
	    dfs(0,len-1);
	    ll ans=0;
	    for(i=0;i<3;i++)
			for(j=0;j<3;j++)
			 ans=(ans+dp[0][len-1][i][j])%mod;
	 	printf("%I64d\n",ans);
	 }
    return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值