HDU 2845 Beans(dp)

本文详细阐述了如何通过遵循特定规则,使用动态规划算法解决Bean-eating游戏中最大豆类收集的问题。提供了输入输出示例,并解释了实现思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
Bean-eating is an interesting game, everyone owns an M*N matrix, which is filled with different qualities beans. Meantime, there is only one bean in any 1*1 grid. Now you want to eat the beans and collect the qualities, but everyone must obey by the following rules: if you eat the bean at the coordinate(x, y), you can’t eat the beans anyway at the coordinates listed (if exiting): (x, y-1), (x, y+1), and the both rows whose abscissas are x-1 and x+1.


Now, how much qualities can you eat and then get ?
 

Input
There are a few cases. In each case, there are two integer M (row number) and N (column number). The next M lines each contain N integers, representing the qualities of the beans. We can make sure that the quality of bean isn't beyond 1000, and 1<=M*N<=200000.
 

Output
For each case, you just output the MAX qualities you can eat and then get.
 

Sample Input
  
4 6 11 0 7 5 13 9 78 4 81 6 22 4 1 40 9 34 16 10 11 22 0 33 39 6
 

Sample Output
  
242
 

Source
 

思路:注意状态转移方程,还有就是行的转移方程和列的相似,还有注意的是数组开大点


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

#define N 200005

int dpx[N],dpy[N];

int main()
{
    int n,m,i,j,s;

    while(~scanf("%d%d",&n,&m))
    {
        memset(dpx,0,sizeof(dpx));
        memset(dpy,0,sizeof(dpy));

        for(i=2;i<=n+1;i++)
        {

             //memset(dpy,0,sizeof(dpy));
             //这里为什么可以注释掉呢,因为会被覆盖
             
             for(j=2;j<=m+1;j++)
            {
                scanf("%d",&s);
                dpy[j]=max(dpy[j-1],dpy[j-2]+s);  //dpy表示这一行从左到右能取到的最大的数和
            }
            dpx[i]=max(dpx[i-1],dpx[i-2]+dpy[1+m]);  //dpx表示从以上行中能取到数的最大的和
        }

        printf("%d\n",dpx[n+1]);
    }
    return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值