Crossed Ladders - UVa 10566 二分几何

本文介绍了一道经典的几何问题——交叉梯子问题。题目要求已知两个梯子的长度及交点距地面的高度,求解街道宽度。文章通过二分查找算法解决了这一问题,并提供了完整的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Crossed Ladders
Input: 
Standard Input

Output: Standard Output

Time Limit: 1 Second

 

A narrow street is lined with tall buildings. An x foot long ladder is rested at the base of the building on the right side of the street and leans on the building on the left side. A y foot long ladder is rested at the base of the building on the left side of the street and leans on the building on the right side. The point where the two ladders cross is exactly c feet from the ground. How wide is the street?

Each line of input contains three positive floating point numbers giving the values of xy, and c.

For each line of input, output one line with a floating point number giving the width of the street in feet, with three decimal digits in the fraction.

Sample Input                             Output for Sample Input

30 40 10
12.619429 8.163332 3
10 10 3
10 10 1
 
26.033
7.000
8.000
9.798


题意:给定两个梯子的长度x和y,求交点的高度为c时,梯子底部的距离是多少。

思路:用二分的方法,当已知这个距离的时候,求高度就很简单了。

AC代码如下:

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
double x,y,c,eps=1e-8;
double solve(double BD)
{
    double D,B,ED;
    D=acos(BD/x);
    B=acos(BD/y);
    ED=BD*sin(B)/sin(M_PI-D-B);
    return ED*sin(D);
}
int main()
{
    double l,r,mi;
    while(~scanf("%lf%lf%lf",&x,&y,&c))
    {
        l=0;r=min(x,y);
        while(r-l>eps)
        {
            mi=(l+r)/2;
            if(solve(mi)>c)
              l=mi;
            else
              r=mi;
        }
        printf("%.3f\n",l);
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值