Garlands - UVa 1443 二分+dp

本文介绍了一道关于圣诞灯饰布置的算法题目,旨在寻找最优的灯串分割方式,以确保每半段的重量和达到最小的最大值。文章给出了问题背景、输入输出格式、样例及解析,并提供了AC代码实现。

Garland decorator is a profession which recently gained in importance, especially during Christmas time. Any kid can decorate a christmas tree, any parent can put gifts in sockets, and even anyone can start believing in Santa Claus, but hanging christmas garlands is a completely difflerent story. As you will learn, it is an extremely important, responsible and tough job.

A garland consists of n pieces of equal length. Due to decorations like christmas balls attached to garlands, piece i has its own weight wi. The garland has to be attached to the ceiling in m spots, where the very beginning of the garland should be attached to spot 1 and its end to spot m. The garland should also be hooked to the remaining spots, which divides it into segments, each consisting of several consecutive pieces. There are, however, several rules that every respectable garland decorator should keep in mind.


(i)
Each segment should contain a positive even number of pieces. Due to this condition, we may divide a segment into two half-segments.
(ii)
To minimize the chance that a guest hits your precious garland with their head (and tears it into pieces), the garland cannot hang too low: each half-segment can contain at most d pieces.
(iii)
Finally, to keep the ceiling from falling on people heads, the decorator should minimize the weight of the heaviest half-segment.


An example of an optimally hanging garland (consisting of twelve pieces in three segments) is presented below; weights of respective pieces are given in circles.

\epsfbox{p4625.eps}

Input 

The input contains several test cases. The first line of the input contains a positive integer Z$ \le$50, denoting the number of test cases. Then Z test cases follow, each conforming to the format described below.


The description of each garland consists of two lines. The first line describing a particular garland contains three positive integers nm, and d (1$ \le$n$ \le$40000, 2$ \le$m$ \le$10000, 1$ \le$d$ \le$10000) separated by single spaces and described above. The second line contains n positive integers w1w2,..., wn (1$ \le$wi$ \le$10000), being the weights of the corresponding pieces.

Output 

For each test case, your program has to write an output conforming to the format described below.


For each garland, your program should output a single line containing one integer, being the weight of the heaviest half-segment in an optimal attachment of the garland. If it is not possible to hang the garland satisfying conditions (i) and (ii), then your program should output word `BAD'.

Sample Input 

4 
4 3 10 
10 10 20 20 
6 4 10 
1 1 100 100 1 1 
6 3 10 
1 1 100 100 1 1 
1 2 2 
333

Sample Output 

20 
100 
200 
BAD

题意:将一个长度为n的灯分成m-1段,每段必须是偶数个,且每半段的数量不超过d,问每半段的重量和的最大值的最小值。

思路:先排除不可能的情况,然后二分这个重量的答案,用dp进行验证,dp[i]表示前i的灯至少需要分多少段,同时dp[i][0,1]区分奇数和偶数。

AC代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
ll val[40010],sum[40010];
int n,n2,m,d,dp[20010][2],INF=1e9;
bool check(ll maxn)
{
    int i,j;
    dp[0][0]=0;
    dp[0][1]=INF;
    for(i=1;i<=n2;i++)
    {
        dp[i][0]=INF;
        dp[i][1]=INF;
        for(j=i-1;j>=0 && i-j<=d;j--)
        {
            if(sum[i*2]-sum[i+j]>maxn)
             break;
            if(sum[i+j]-sum[j*2]<=maxn)
            {
                dp[i][0]=min(dp[i][0],dp[j][1]+1);
                dp[i][1]=min(dp[i][1],dp[j][0]+1);
            }
        }
    }
    if(dp[n2][m%2]<=m)
      return true;
    else
      return false;
}
int main()
{
    int T,t,i,j,k,a,b,len;
    ll l,r,mi;
    scanf("%d",&T);
    for(t=1;t<=T;t++)
    {
        scanf("%d%d%d",&n,&m,&d);
        for(i=1;i<=n;i++)
        {
            scanf("%lld",&val[i]);
            sum[i]=sum[i-1]+val[i];
        }
        if(m==1 || n&1 || n<2*(m-1) || n>(m-1)*d*2)
        {
            printf("BAD\n");
            continue;
        }
        n2=n/2;
        m--;
        l=1;r=sum[n];
        while(l<r)
        {
            mi=(l+r)/2;
            if(check(mi))
              r=mi;
            else
              l=mi+1;
        }
        printf("%lld\n",l);
    }
}



Nano-ESG数据资源库的构建基于2023年初至2024年秋季期间采集的逾84万条新闻文本,从中系统提炼出企业环境、社会及治理维度的信息。其构建流程首先依据特定术语在德语与英语新闻平台上检索,初步锁定与德国DAX 40成分股企业相关联的报道。随后借助嵌入技术对文本段落执行去重操作,以降低内容冗余。继而采用GLiNER这一跨语言零样本实体识别系统,排除与目标企业无关的文档。在此基础上,通过GPT-3.5与GPT-4o等大规模语言模型对文本进行双重筛选:一方面判定其与ESG议题的相关性,另一方面生成简明的内容概要。最终环节由GPT-4o模型完成,它对每篇文献进行ESG情感倾向(正面、中性或负面)的判定,并标注所涉及的ESG具体维度,从而形成具备时序特征的ESG情感与维度标注数据集。 该数据集适用于多类企业可持续性研究,例如ESG情感趋势分析、ESG维度细分类别研究,以及企业可持续性事件的时序演变追踪。研究者可利用数据集内提供的新闻摘要、情感标签与维度分类,深入考察企业在不同时期的环境、社会及治理表现。此外,借助Bertopic等主题建模方法,能够从数据中识别出与企业相关的核心ESG议题,并观察这些议题随时间的演进轨迹。该资源以其开放获取特性与连续的时间覆盖,为探究企业可持续性表现的动态变化提供了系统化的数据基础。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值