Garlands - UVa 1443 二分+dp

本文介绍了一道关于圣诞灯饰布置的算法题目,旨在寻找最优的灯串分割方式,以确保每半段的重量和达到最小的最大值。文章给出了问题背景、输入输出格式、样例及解析,并提供了AC代码实现。

Garland decorator is a profession which recently gained in importance, especially during Christmas time. Any kid can decorate a christmas tree, any parent can put gifts in sockets, and even anyone can start believing in Santa Claus, but hanging christmas garlands is a completely difflerent story. As you will learn, it is an extremely important, responsible and tough job.

A garland consists of n pieces of equal length. Due to decorations like christmas balls attached to garlands, piece i has its own weight wi. The garland has to be attached to the ceiling in m spots, where the very beginning of the garland should be attached to spot 1 and its end to spot m. The garland should also be hooked to the remaining spots, which divides it into segments, each consisting of several consecutive pieces. There are, however, several rules that every respectable garland decorator should keep in mind.


(i)
Each segment should contain a positive even number of pieces. Due to this condition, we may divide a segment into two half-segments.
(ii)
To minimize the chance that a guest hits your precious garland with their head (and tears it into pieces), the garland cannot hang too low: each half-segment can contain at most d pieces.
(iii)
Finally, to keep the ceiling from falling on people heads, the decorator should minimize the weight of the heaviest half-segment.


An example of an optimally hanging garland (consisting of twelve pieces in three segments) is presented below; weights of respective pieces are given in circles.

\epsfbox{p4625.eps}

Input 

The input contains several test cases. The first line of the input contains a positive integer Z$ \le$50, denoting the number of test cases. Then Z test cases follow, each conforming to the format described below.


The description of each garland consists of two lines. The first line describing a particular garland contains three positive integers nm, and d (1$ \le$n$ \le$40000, 2$ \le$m$ \le$10000, 1$ \le$d$ \le$10000) separated by single spaces and described above. The second line contains n positive integers w1w2,..., wn (1$ \le$wi$ \le$10000), being the weights of the corresponding pieces.

Output 

For each test case, your program has to write an output conforming to the format described below.


For each garland, your program should output a single line containing one integer, being the weight of the heaviest half-segment in an optimal attachment of the garland. If it is not possible to hang the garland satisfying conditions (i) and (ii), then your program should output word `BAD'.

Sample Input 

4 
4 3 10 
10 10 20 20 
6 4 10 
1 1 100 100 1 1 
6 3 10 
1 1 100 100 1 1 
1 2 2 
333

Sample Output 

20 
100 
200 
BAD

题意:将一个长度为n的灯分成m-1段,每段必须是偶数个,且每半段的数量不超过d,问每半段的重量和的最大值的最小值。

思路:先排除不可能的情况,然后二分这个重量的答案,用dp进行验证,dp[i]表示前i的灯至少需要分多少段,同时dp[i][0,1]区分奇数和偶数。

AC代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
typedef long long ll;
ll val[40010],sum[40010];
int n,n2,m,d,dp[20010][2],INF=1e9;
bool check(ll maxn)
{
    int i,j;
    dp[0][0]=0;
    dp[0][1]=INF;
    for(i=1;i<=n2;i++)
    {
        dp[i][0]=INF;
        dp[i][1]=INF;
        for(j=i-1;j>=0 && i-j<=d;j--)
        {
            if(sum[i*2]-sum[i+j]>maxn)
             break;
            if(sum[i+j]-sum[j*2]<=maxn)
            {
                dp[i][0]=min(dp[i][0],dp[j][1]+1);
                dp[i][1]=min(dp[i][1],dp[j][0]+1);
            }
        }
    }
    if(dp[n2][m%2]<=m)
      return true;
    else
      return false;
}
int main()
{
    int T,t,i,j,k,a,b,len;
    ll l,r,mi;
    scanf("%d",&T);
    for(t=1;t<=T;t++)
    {
        scanf("%d%d%d",&n,&m,&d);
        for(i=1;i<=n;i++)
        {
            scanf("%lld",&val[i]);
            sum[i]=sum[i-1]+val[i];
        }
        if(m==1 || n&1 || n<2*(m-1) || n>(m-1)*d*2)
        {
            printf("BAD\n");
            continue;
        }
        n2=n/2;
        m--;
        l=1;r=sum[n];
        while(l<r)
        {
            mi=(l+r)/2;
            if(check(mi))
              r=mi;
            else
              l=mi+1;
        }
        printf("%lld\n",l);
    }
}



内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值