An n × n square matrix is special, if:
- it is binary, that is, each cell contains either a 0, or a 1;
- the number of ones in each row and column equals 2.
You are given n and the first m rows of the matrix. Print the number of special n × n matrices, such that the first m rows coincide with the given ones.
As the required value can be rather large, print the remainder after dividing the value by the given number mod.
The first line of the input contains three integers n, m, mod (2 ≤ n ≤ 500, 0 ≤ m ≤ n, 2 ≤ mod ≤ 109). Then m lines follow, each of them contains n characters — the first rows of the required special matrices. Each of these lines contains exactly two characters '1', the rest characters are '0'. Each column of the given m × n table contains at most two numbers one.
Print the remainder after dividing the required value by number mod.
3 1 1000 011
2
4 4 100500 0110 1010 0101 1001
1
For the first test the required matrices are:
011 101 110 011 110 101
In the second test the required matrix is already fully given, so the answer is 1.
题意:构建一个n*n的矩阵使得每行每列各有两个1,且前m行已给出,问有多少种可能的情况。
思路:dp[s1][s2]表示轮到该行的时候有s1个列可以放2个1,s2个列可以放1个1,然后转移的话很简单,代码页不长。
AC代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
ll dp[510][510],num[510],MOD;
char s[510];
int main()
{
int n,m,i,j,k,a=0,b=0,len,s1=0,s2=0;
scanf("%d%d%I64d",&n,&m,&MOD);
for(i=1;i<=m;i++)
{
scanf("%s",s+1);
for(j=1;j<=n;j++)
if(s[j]=='1')
num[j]++;
}
for(i=1;i<=n;i++)
if(num[i]==0)
s1++;
else if(num[i]==1)
s2++;
len=n-m;
dp[s1][s2]=1;
for(i=m+1;i<=n;i++)
{
for(s1=0;s1<=n;s1++)
{
s2=(n-i+1)*2-s1*2;
if(s2<0 || s2>n)
continue;
if(s1>=2)
dp[s1-2][s2+2]=(dp[s1-2][s2+2]+dp[s1][s2]*s1*(s1-1)/2)%MOD;
if(s1>=1)
dp[s1-1][s2]=(dp[s1-1][s2]+dp[s1][s2]*s1*s2)%MOD;
if(s2>=2)
dp[s1][s2-2]=(dp[s1][s2-2]+dp[s1][s2]*s2*(s2-1)/2)%MOD;
}
}
printf("%I64d\n",dp[0][0]);
}

本文介绍了一种算法,用于构建n*n的特殊矩阵。特殊矩阵的定义为每个元素为0或1,每一行和每一列都恰好包含两个1。文章详细解释了如何通过输入的前m行来确定剩余矩阵的可能性数量,并提供了实现代码。
770

被折叠的 条评论
为什么被折叠?



