ACM Puzzles - UVa 12117 dp

本文探讨了一种特定的3*N矩阵拼图问题,利用动态规划算法计算不同拼图方案的数量。考虑到拼图的不同组合方式及限制条件,提供了一个有效的解决方案。

The Association of Children Machines (ACM) is planning to build up a new type of puzzle for children. All the puzzles will have dimension (3×N) and has some or all of the following pieces. Some pieces can occur more than once. Since the puzzles made by ACM are in very high demand so many other companies have released counterfeit products which look just like puzzles made by ACM.

 

Figure 1: The 22 allowed pieces of the puzzle.

 

To prevent such counterfeit products ACM has taken up a measure which they hope will help the sellers to prevent the counterfeit products in their shop. As all puzzles are initially available in a box in a solved format and a (3×N) puzzle can have zillions of solutions for larger values of N. All the puzzles from ACM factory will have only some specific solutions when sold; they will be unique and only small fractions of all possible solutions. So it is more likely that the counterfeit products won’t have these orientations. You have to help them in the initial part: given the value of N you will have to find how many different solutions are there with the given pieces. You are not allowed to rotate the pieces while solving the puzzle but you can use any piece any number of time. Of course some of the pieces are mere rotation of another but they also cannot be rotated to make it look like the other. For example the piece with shape upside down T (the brown piece) cannot be rotated to look like a normal T (the pink piece).

 

 

Figure 2: The 26 solutions for N=5
 
Input

The input file contains several lines of input. Each line contains an integer N (0<N<2001). Here N denotes the width of the puzzle. The height of the puzzle is always 3. Input is terminated by a line containing a single zero. This line should not be processed.

 

Output

For each value of N produce one line of output. This line contains the serial of output followed by an integer which denotes the value (S % 1000000000000). Here S denotes the number of solutions for a (3×N) puzzle. Look at the output for sample input for details.

 

Sample Input                            Output for Sample Input

5

100

0

Case 1: 26

Case 2: 584039302899

 



题意:3*N的矩阵有多少种铺成的方式。

思路:dp[i][j]表示第i列差j的情况的数目。

AC代码如下:

#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int num[9]={0,1,2,3,4,5,6,13,38};
ll dp[2010][70],MOD=1000000000000LL;
int main()
{
    int n,t=0,i,j,k;
    dp[0][0]=1;
    dp[1][0]=1;
    for(i=2;i<=2000;i++)
    {
        dp[i][0]+=dp[i-1][0];
        dp[i][5]+=dp[i-2][0];
        dp[i][0]+=dp[i-1][5];
        dp[i][0]+=dp[i-1][3];
        dp[i][5]+=dp[i-2][2];
        dp[i][2]+=dp[i-2][0];

        dp[i][0]+=dp[i-1][2];
        dp[i][1]+=dp[i-1][13];
        dp[i][4]+=dp[i-1][38];
        dp[i][1]+=dp[i-1][3];
        dp[i][4]+=dp[i-1][6];
        dp[i][1]+=dp[i-2][0];

        dp[i][0]+=dp[i-1][6];
        dp[i][3]+=dp[i-2][0];
        dp[i][0]+=dp[i-1][4];
        dp[i][13]+=dp[i-2][3];
        dp[i][38]+=dp[i-2][6];
        dp[i][6]+=dp[i-2][0];

        dp[i][0]+=dp[i-1][1];
        dp[i][3]+=dp[i-2][4];
        dp[i][6]+=dp[i-2][1];
        dp[i][4]+=dp[i-2][0];

        for(j=0;j<9;j++)
           dp[i][j]=dp[i][j]%MOD;
    }
    while(~scanf("%d",&n) && n)
       printf("Case %d: %lld\n",++t,dp[n][0]);

}



混合动力汽车(HEV)模型的Simscape模型(Matlab代码、Simulink仿真实现)内容概要:本文档介绍了一个混合动力汽车(HEV)的Simscape模型,该模型通过Matlab代码和Simulink仿真工具实现,旨在对混合动力汽车的动力系统进行建模与仿真分析。模型涵盖了发动机、电机、电池、传动系统等关键部件,能够模拟车辆在不同工况下的能量流动与控制策略,适用于动力系统设计、能耗优化及控制算法验证等研究方向。文档还及该资源属于一个涵盖多个科研领域的MATLAB仿真资源包,涉及电力系统、机器学习、路径规划、信号处理等多个技术方向,配套供网盘下载链接,便于用户获取完整资源。; 适合人群:具备Matlab/Simulink使用基础的高校研究生、科研人员及从事新能源汽车系统仿真的工程技术人员。; 使用场景及目标:①开展混合动力汽车能量管理策略的研究与仿真验证;②学习基于Simscape的物理系统建模方法;③作为教学案例用于车辆工程或自动化相关课程的实践环节;④与其他优化算法(如智能优化、强化学习)结合,实现控制策略的优化设计。; 阅读建议:建议使用者先熟悉Matlab/Simulink及Simscape基础操作,结合文档中的模型结构逐步理解各模块功能,可在此基础上修改参数或替换控制算法以满足具体研究需求,同时推荐访问供的网盘链接获取完整代码与示例文件以便深入学习与调试。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值