Largest Submatrix - HDU 2870 dp

本文介绍了一种解决最大相同字母子矩阵问题的算法,通过三次计算最大空白子矩阵来求解,利用动态规划思想更新左边界和右边界,实现高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Largest Submatrix

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1488    Accepted Submission(s): 716


Problem Description
Now here is a matrix with letter 'a','b','c','w','x','y','z' and you can change 'w' to 'a' or 'b', change 'x' to 'b' or 'c', change 'y' to 'a' or 'c', and change 'z' to 'a', 'b' or 'c'. After you changed it, what's the largest submatrix with the same letters you can make?
 

Input
The input contains multiple test cases. Each test case begins with m and n (1 ≤ m, n ≤ 1000) on line. Then come the elements of a matrix in row-major order on m lines each with n letters. The input ends once EOF is met.
 

Output
For each test case, output one line containing the number of elements of the largest submatrix of all same letters.
 

Sample Input
2 4 abcw wxyz
 

Sample Output
3
 

思路:其实就是算3次最大空白子矩阵问题,用n方算法,l[i][j]和r[i][j]表示在i行j点上方连续的空白列可以向左右扩展的最远距离。

AC代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
char s[1010][1010];
int v[1010][1010],ans,n,m,l[1010][1010],r[1010][1010];
void solve()
{ int i,j,k;
  for(i=1;i<=n;i++)
  { v[i][0]=-1;
    v[i][m+1]=-1;
    for(j=1;j<=m;j++)
     while(v[i][j]<=v[i][l[i][j]-1])
      l[i][j]=l[i][l[i][j]-1];
    for(j=m;j>=1;j--)
     while(v[i][j]<=v[i][r[i][j]+1])
      r[i][j]=r[i][r[i][j]+1];
    for(j=1;j<=m;j++)
     ans=max(ans,v[i][j]*(r[i][j]-l[i][j]+1));
  }
}
int main()
{ int i,j,k;
  while(~scanf("%d%d",&n,&m))
  { ans=0;
    for(i=1;i<=n;i++)
     scanf("%s",s[i]+1);
    for(i=1;i<=n;i++)
     for(j=1;j<=m;j++)
     { l[i][j]=r[i][j]=j;
       if(s[i][j]=='a' || s[i][j]=='w' || s[i][j]=='y' || s[i][j]=='z')
        v[i][j]=v[i-1][j]+1;
       else
        v[i][j]=0;
     }
    solve();
    for(i=1;i<=n;i++)
     for(j=1;j<=m;j++)
     { l[i][j]=r[i][j]=j;
       if(s[i][j]=='b' || s[i][j]=='w' || s[i][j]=='x' || s[i][j]=='z')
        v[i][j]=v[i-1][j]+1;
       else
        v[i][j]=0;
     }
    solve();
    for(i=1;i<=n;i++)
     for(j=1;j<=m;j++)
     { l[i][j]=r[i][j]=j;
       if(s[i][j]=='c' || s[i][j]=='x' || s[i][j]=='y' || s[i][j]=='z')
        v[i][j]=v[i-1][j]+1;
       else
        v[i][j]=0;
     }
    solve();
    printf("%d\n",ans);
  }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值