Longest Ordered Subsequence
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 32647 | Accepted: 14265 |
Description
A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN)
be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence
(1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7 1 7 3 5 9 4 8
Sample Output
4
AC代码如下;
#include<cstdio>
#include<cstring>
using namespace std;
int n[1010],num[1010],len=0;
int solve(int k)
{ int l=1,r=len,mi;
while(l<=r)
{ mi=(l+r)/2;
if(num[mi]>=k)
r=mi-1;
else
l=mi+1;
}
return l;
}
int main()
{ int n,i,j,k;
scanf("%d",&n);
num[0]=-1;
for(i=1;i<=n;i++)
{ scanf("%d",&k);
if(k>num[len])
num[++len]=k;
else
num[solve(k)]=k;
}
printf("%d\n",len);
}

本文介绍了一种解决最长有序子序列问题的高效算法,并通过一个示例详细展示了输入输出及核心实现逻辑,该算法利用二分查找优化了传统方法。
2101

被折叠的 条评论
为什么被折叠?



