Stacking Boxes - UVa 103 dp

本文深入探讨了嵌入式硬件如单片机、电路设计等与软件开发的相关性,包括软件如何与硬件无缝对接,实现高效运行与控制。通过详细解析各类嵌入式开发环境和工具,展示在实际项目中如何利用这些资源优化系统性能。

Stacking Boxes

Background

Some concepts in Mathematics and Computer Science are simple in one or two dimensions but become more complex when extended to arbitrary dimensions. Consider solving differential equations in several dimensions and analyzing the topology of an n-dimensional hypercube. The former is much more complicated than its one dimensional relative while the latter bears a remarkable resemblance to its ``lower-class'' cousin.

The Problem

Consider an n-dimensional ``box'' given by its dimensions. In two dimensions the box (2,3) might represent a box with length 2 units and width 3 units. In three dimensions the box (4,8,9) can represent a box tex2html_wrap_inline40(length, width, and height). In 6 dimensions it is, perhaps, unclear what the box (4,5,6,7,8,9) represents; but we can analyze properties of the box such as the sum of its dimensions.

In this problem you will analyze a property of a group of n-dimensional boxes. You are to determine the longest nesting string of boxes, that is a sequence of boxes tex2html_wrap_inline44 such that each box tex2html_wrap_inline46 nests in boxtex2html_wrap_inline48 ( tex2html_wrap_inline50 .

A box D = ( tex2html_wrap_inline52 ) nests in a box E = ( tex2html_wrap_inline54 ) if there is some rearrangement of the tex2html_wrap_inline56 such that when rearranged each dimension is less than the corresponding dimension in box E. This loosely corresponds to turning box D to see if it will fit in box E. However, since any rearrangement suffices, box D can be contorted, not just turned (see examples below).

For example, the box D = (2,6) nests in the box E = (7,3) since D can be rearranged as (6,2) so that each dimension is less than the corresponding dimension in E. The box D = (9,5,7,3) does NOT nest in the box E = (2,10,6,8) since no rearrangement of D results in a box that satisfies the nesting property, but F = (9,5,7,1) does nest in box E since F can be rearranged as (1,9,5,7) which nests in E.

Formally, we define nesting as follows: box D = ( tex2html_wrap_inline52 ) nests in box E = ( tex2html_wrap_inline54 ) if there is a permutation tex2html_wrap_inline62 of tex2html_wrap_inline64 such that ( tex2html_wrap_inline66 ) ``fits'' in ( tex2html_wrap_inline54 ) i.e., iftex2html_wrap_inline70 for all tex2html_wrap_inline72 .

The Input

The input consists of a series of box sequences. Each box sequence begins with a line consisting of the the number of boxes k in the sequence followed by the dimensionality of the boxes, n (on the same line.)

This line is followed by k lines, one line per box with the n measurements of each box on one line separated by one or more spaces. The tex2html_wrap_inline82 line in the sequence ( tex2html_wrap_inline84 ) gives the measurements for the tex2html_wrap_inline82 box.

There may be several box sequences in the input file. Your program should process all of them and determine, for each sequence, which of the k boxes determine the longest nesting string and the length of that nesting string (the number of boxes in the string).

In this problem the maximum dimensionality is 10 and the minimum dimensionality is 1. The maximum number of boxes in a sequence is 30.

The Output

For each box sequence in the input file, output the length of the longest nesting string on one line followed on the next line by a list of the boxes that comprise this string in order. The ``smallest'' or ``innermost'' box of the nesting string should be listed first, the next box (if there is one) should be listed second, etc.

The boxes should be numbered according to the order in which they appeared in the input file (first box is box 1, etc.).

If there is more than one longest nesting string then any one of them can be output.

Sample Input

5 2
3 7
8 10
5 2
9 11
21 18
8 6
5 2 20 1 30 10
23 15 7 9 11 3
40 50 34 24 14 4
9 10 11 12 13 14
31 4 18 8 27 17
44 32 13 19 41 19
1 2 3 4 5 6
80 37 47 18 21 9

Sample Output

5
3 1 2 4 5
4
7 2 5 6

题意:如果一个盒子的维度都可以装下另一个盒子,就可以让他们嵌套,问最多能嵌套多少层,分别是哪些盒子。

思路:每个盒子的维度先排序,然后所有盒子按最大维度排序,最大的相同时排第二大的。然后比较一个盒子更大时,就是排完序后这个盒子的维度比另一个都大。然后递推还是比较容易的,就是这类题目比较恶心。

AC代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,dp[1010],f[1010];
struct node
{ int d[12],num,to;
}box[1010];
bool cmp(node a,node b)
{ int i;
  for(i=m;i>=1;i--)
   if(a.d[i]<b.d[i])
    return true;
   else if(a.d[i]>b.d[i])
    return false;
  return true;
}
bool bigger(int a,int b)
{ int i;
  for(i=1;i<=m;i++)
   if(box[a].d[i]<=box[b].d[i])
    return false;
  return true;
}
int main()
{ int i,j,k,temp,ans,pos;
  while(~scanf("%d%d",&n,&m))
  { for(i=1;i<=n;i++)
    { for(j=1;j<=m;j++)
       scanf("%d",&box[i].d[j]);
      box[i].num=i;
      sort(box[i].d+1,box[i].d+1+m);
    }
    sort(box+1,box+1+n,cmp);
    memset(dp,0,sizeof(dp));
    dp[1]=1;
    box[1].to=0;
    for(i=2;i<=n;i++)
    { temp=0;
      for(j=1;j<i;j++)
       if(bigger(i,j) && dp[j]>=temp)
       { temp=dp[j];
         box[i].to=j;
       }
      dp[i]=temp+1;
      if(temp==0)
       box[i].to=0;
    }
    ans=0;pos=0;
    for(i=1;i<=n;i++)
     if(dp[i]>=ans)
     { ans=dp[i];
       pos=i;
     }
    for(i=ans;i>=1;i--)
    { f[i]=box[pos].num;
      pos=box[pos].to;
    }
    printf("%d\n",ans);
    if(n>0)
    { printf("%d",f[1]);;
      for(i=2;i<=ans;i++)
       printf(" %d",f[i]);
      printf("\n");
    }
  }
}



内容概要:本文介绍了一个基于Matlab的综合能源系统优化调度仿真资源,重点实现了含光热电站、有机朗肯循环(ORC)和电含光热电站、有机有机朗肯循环、P2G的综合能源优化调度(Matlab代码实现)转气(P2G)技术的冷、热、电多能互补系统的优化调度模型。该模型充分考虑多种能源形式的协同转换与利用,通过Matlab代码构建系统架构、设定约束条件并求解优化目标,旨在提升综合能源系统的运行效率与经济性,同时兼顾灵活性供需不确定性下的储能优化配置问题。文中还提到了相关仿真技术支持,如YALMIP工具包的应用,适用于复杂能源系统的建模与求解。; 适合人群:具备一定Matlab编程基础和能源系统背景知识的科研人员、研究生及工程技术人员,尤其适合从事综合能源系统、可再生能源利用、电力系统优化等方向的研究者。; 使用场景及目标:①研究含光热、ORC和P2G的多能系统协调调度机制;②开展考虑不确定性的储能优化配置与经济调度仿真;③学习Matlab在能源系统优化中的建模与求解方法,复现高水平论文(如EI期刊)中的算法案例。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码和案例文件,按照目录顺序逐步学习,重点关注模型构建逻辑、约束设置与求解器调用方式,并通过修改参数进行仿真实验,加深对综合能源系统优化调度的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值