Travelling - HDU 3001 状压dp

Travelling

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3358    Accepted Submission(s): 1045


Problem Description
After coding so many days,Mr Acmer wants to have a good rest.So travelling is the best choice!He has decided to visit n cities(he insists on seeing all the cities!And he does not mind which city being his start station because superman can bring him to any city at first but only once.), and of course there are m roads here,following a fee as usual.But Mr Acmer gets bored so easily that he doesn't want to visit a city more than twice!And he is so mean that he wants to minimize the total fee!He is lazy you see.So he turns to you for help.
 

Input
There are several test cases,the first line is two intergers n(1<=n<=10) and m,which means he needs to visit n cities and there are m roads he can choose,then m lines follow,each line will include three intergers a,b and c(1<=a,b<=n),means there is a road between a and b and the cost is of course c.Input to the End Of File.
 

Output
Output the minimum fee that he should pay,or -1 if he can't find such a route.
 

Sample Input
2 1 1 2 100 3 2 1 2 40 2 3 50 3 3 1 2 3 1 3 4 2 3 10
 

Sample Output
100 90 7


题意:一个人去旅行,最开始可以在任意一个地点,每个地点最多经过两次,问你经过所有地点的最少花费是多少。

思路:因为每个点最多经过两个,所以要用3进制的状压dp。dp[S][i]表示起点在i达到S状态的最少花费,然后倒着往前推。

AC代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int dis[20][20],dp[100000][20],n,m,pow[20],dig[100000][20],state[100000],va;
int main()
{ int i,j,k,S,S1,S2,u,v,w,ans,ret;
  pow[0]=1;
  for(i=1;i<=12;i++)
   pow[i]=pow[i-1]*3;
  for(i=1;i<60000;i++)
  { ret=i;
    for(j=1;j<=10;j++)
    { dig[i][j]=ret%3;
      ret/=3;
    }
  }
  while(~scanf("%d%d",&n,&m))
  { memset(dis,-1,sizeof(dis));
    memset(dp,-1,sizeof(dp));
    for(i=1;i<=m;i++)
    { scanf("%d%d%d",&u,&v,&w);
      if(dis[u][v]==-1 || w<dis[u][v])
      {dis[u][v]=w;
       dis[v][u]=w;
      }
    }
    ans=-1;
    for(i=1;i<=n;i++)
     dp[pow[i-1]][i]=0;
    for(S=0;S<pow[n];S++)
    { va=1;
      for(i=1;i<=n;i++)
      { if(dig[S][i]==0)
         va=0;
        if(dp[S][i]==-1)
         continue;
        for(j=1;j<=n;j++)
         if(dis[i][j]!=-1 && dig[S][j]<=1  && i!=j)
         { if(dp[S+pow[j-1]][j]==-1)
            dp[S+pow[j-1]][j]=dp[S][i]+dis[i][j];
           else
            dp[S+pow[j-1]][j]=min(dp[S+pow[j-1]][j],dp[S][i]+dis[i][j]);
         }
      }
      if(va)
      for(i=1;i<=n;i++)
       if(dp[S][i]!=-1)
       if(ans==-1)
        ans=dp[S][i];
       else
        ans=min(ans,dp[S][i]);
    }
    printf("%d\n",ans);
  }
}



评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值