最近公共祖先LCA Tarjan算法

本文介绍了一种使用Tarjan算法求解最近公共祖先问题的方法。通过建立一棵深度优先搜索树,利用并查集原理将树中的节点分为多个集合,从而有效地解决了问题。这种方法的时间复杂度为O(n+q),适用于大量询问的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     个人觉得十分不错的讲解,弄懂了!

第一次写最近公共祖先问题,用的邻接表指针。

对于一棵有根树,就会有父亲结点,祖先结点,当然最近公共祖先就是这两个点所有的祖先结点中深度最大的一个结点。

       0

       |

       1

     /   \

   2      3

比如说在这里,如果0为根的话,那么1是2和3的父亲结点,0是1的父亲结点,0和1都是2和3的公共祖先结点,但是1才是最近的公共祖先结点,或者说1是2和3的所有祖先结点中距离根结点最远的祖先结点。

在求解最近公共祖先为问题上,用到的是Tarjan的思想,从根结点开始形成一棵深搜树,非常好的处理技巧就是在回溯到结点u的时候,u的子树已经遍历,这时候才把u结点放入合并集合中,这样u结点和所有u的子树中的结点的最近公共祖先就是u了,u和还未遍历的所有u的兄弟结点及子树中的最近公共祖先就是u的父亲结点。以此类推。。这样我们在对树深度遍历的时候就很自然的将树中的结点分成若干的集合,两个集合中的所属不同集合的任意一对顶点的公共祖先都是相同的,也就是说这两个集合的最近公共最先只有一个。对于每个集合而言可以用并查集来优化,时间复杂度就大大降低了,为O(n + q),n为总结点数,q为询问结点对数。

另外Tarjan解法,是一个离线算法,就是说它必须将所有询问先记录下来,再一次性的求出每个点对的最近公共祖先,只有这样才可以达到降低时间复杂度。另外还有一个在线算法,有待学习,呵呵。。

参考代码:

int find(int n)  
{  
    if(f[n]==n)  
        return n;  
    else  
        f[n]=find(f[n]);  
    return f[n];  
}//查找函数,并压缩路径  
  
int Union(int x,int y)  
{  
    int a=find(x);  
    int b=find(y);  
    if(a==b)  
        return 0;  
    //相等的话,x向y合并  
    else if(r[a]<=r[b])  
    {  
        f[a]=b;  
        r[b]+=r[a];  
    }  
    else  
    {  
        f[b]=a;  
        r[a]+=r[b];  
    }  
    return 1;  
  
}//合并函数,如果属于同一分支则返回0,成功合并返回1  
  
  
void LCA(int u)  
{  
    ancestor[u]=u;  
    int size = tree[u].size();  
    for(int i=0;i<size;i++)  
    {  
        LCA(tree[u][i]);  
        Union(u,tree[u][i]);  
        ancestor[find(u)]=u;  
    }  
    visit[u]=1;  
    size = Qes[u].size();  
    for(int i=0;i<size;i++)  
    {  
        //如果已经访问了问题节点,就可以返回结果了.  
        if(visit[Qes[u][i]]==1)  
        {  
            cout<<ancestor[find(Qes[u][i])]<<endl;  
            return;  
        }  
    }  
}  
例题应用:http://acm.pku.edu.cn/JudgeOnline/problem?id=1330

代码:(poj 1330)

    #include<iostream>  
    #include<vector>  
    using namespace std;  
      
    const int MAX=10001;  
    int f[MAX];  
    int r[MAX];  
    int indegree[MAX];//保存每个节点的入度  
    int visit[MAX];  
    vector<int> tree[MAX],Qes[MAX];  
    int ancestor[MAX];  
      
      
    void init(int n)  
    {  
        for(int i=1;i<=n;i++)  
        {  
      
            r[i]=1;  
            f[i]=i;  
            indegree[i]=0;  
            visit[i]=0;  
            ancestor[i]=0;  
            tree[i].clear();  
            Qes[i].clear();  
        }  
      
    }  
      
    int find(int n)  
    {  
        if(f[n]==n)  
            return n;  
        else  
            f[n]=find(f[n]);  
        return f[n];  
    }//查找函数,并压缩路径  
      
    int Union(int x,int y)  
    {  
        int a=find(x);  
        int b=find(y);  
        if(a==b)  
            return 0;  
        //相等的话,x向y合并  
        else if(r[a]<=r[b])  
        {  
            f[a]=b;  
            r[b]+=r[a];  
        }  
        else  
        {  
            f[b]=a;  
            r[a]+=r[b];  
        }  
        return 1;  
      
    }//合并函数,如果属于同一分支则返回0,成功合并返回1  
      
      
    void LCA(int u)  
    {  
        ancestor[u]=u;  
        int size = tree[u].size();  
        for(int i=0;i<size;i++)  
        {  
            LCA(tree[u][i]);  
            Union(u,tree[u][i]);  
            ancestor[find(u)]=u;  
        }  
        visit[u]=1;  
        size = Qes[u].size();  
        for(int i=0;i<size;i++)  
        {  
            //如果已经访问了问题节点,就可以返回结果了.  
            if(visit[Qes[u][i]]==1)  
            {  
                cout<<ancestor[find(Qes[u][i])]<<endl;  
                return;  
            }  
        }  
    }  
      
      
    int main()  
    {  
        int cnt;  
        int n;  
        cin>>cnt;  
        while(cnt--)  
        {  
            cin>>n;;  
            init(n);  
            int s,t;  
            for(int i=1;i<n;i++)  
            {  
                cin>>s>>t;  
                tree[s].push_back(t);  
                indegree[t]++;  
            }  
            //这里可以输入多组询问  
            cin>>s>>t;  
            //相当于询问两次  
            Qes[s].push_back(t);  
            Qes[t].push_back(s);  
            for(int i=1;i<=n;i++)  
            {  
                //寻找根节点  
                if(indegree[i]==0)  
                {  
                    LCA(i);  
                    break;  
                }  
            }  
        }  
        return 0;  
    }  





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值