HUST 1017 Exact cover (精确覆盖|Dancing Links模板题)

本文探讨了使用DLX算法解决精确覆盖问题的方法,详细解释了算法的实现步骤,并通过实例展示了如何应用该算法来求解具体问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:精确覆盖问题。

思路:测试模板。

#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<ctime>
#define eps 1e-6
#define LL long long
#define pii pair<int, int>
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;

//const int MAXN = 5000000 + 5;
//const int INF = 0x3f3f3f3f;
const int maxnode = 110000;
const int MaxM = 1010;
const int MaxN = 1010;
struct DLX
{
    int n,m,size;
    int U[maxnode],D[maxnode],R[maxnode],L[maxnode],Row[maxnode],Col[maxnode];
    int H[MaxN], S[MaxM];//H是每一行的头指针,S是每一列的节点数量 
    int ansd, ans[MaxN];
    void init(int _n,int _m)
    {
        n = _n;
        m = _m;
        for(int i = 0;i <= m;i++)
        {
            S[i] = 0;
            U[i] = D[i] = i;
            L[i] = i-1;
            R[i] = i+1;
        }
        R[m] = 0; L[0] = m;
        size = m;
        for(int i = 1;i <= n;i++)
            H[i] = -1;
    }
    void Link(int r,int c)
    {
        ++S[Col[++size]=c];
        Row[size] = r;
        D[size] = D[c];
        U[D[c]] = size;
        U[size] = c;
        D[c] = size;
        if(H[r] < 0)H[r] = L[size] = R[size] = size;
        else
        {
            R[size] = R[H[r]];
            L[R[H[r]]] = size;
            L[size] = H[r];
            R[H[r]] = size;
        }
    }
    void remove(int c)
    {
        L[R[c]] = L[c]; R[L[c]] = R[c];
        for(int i = D[c];i != c;i = D[i])
            for(int j = R[i];j != i;j = R[j])
            {
                U[D[j]] = U[j];
                D[U[j]] = D[j];
                --S[Col[j]];
            }
    }
    void resume(int c)
    {
        for(int i = U[c];i != c;i = U[i])
            for(int j = L[i];j != i;j = L[j])
                ++S[Col[U[D[j]]=D[U[j]]=j]];
        L[R[c]] = R[L[c]] = c;
    }
    //d为递归深度
    bool Dance(int d)
    {
        if(R[0] == 0)
        {
            ansd = d;
            return true;
        }
        int c = R[0];
        for(int i = R[0];i != 0;i = R[i])
            if(S[i] < S[c])
                c = i;
        remove(c);
        for(int i = D[c];i != c;i = D[i])
        {
            ans[d] = Row[i];
            for(int j = R[i]; j != i;j = R[j])remove(Col[j]);
            if(Dance(d+1))return true;
            for(int j = L[i]; j != i;j = L[j])resume(Col[j]);
        }
        resume(c);
        return false;
    }
} dlx;


int main() {
    //freopen("input.txt", "r", stdin);
	int n, m;
	while(cin >> n >> m) {
		dlx.init(n, m);
		for(int i = 1; i <= n; i++) {
			int cnt;
			scanf("%d", &cnt);
			for(int j = 1; j <= cnt; j++) {
				int tmp;
				scanf("%d", &tmp);
				dlx.Link(i, tmp);
			}
		}
		bool ok = dlx.Dance(0);
		if(!ok) puts("NO");
		else {
			printf("%d", dlx.ansd);
			for(int i = 0; i < dlx.ansd; i++) printf(" %d", dlx.ans[i]);
			puts("");
		}
	}
    return 0;
}

















基于数据挖掘的音乐推荐系统设计与实现 需要一个代码说明,不需要论文 采用python语言,django框架,mysql数据库开发 编程环境:pycharm,mysql8.0 系统分为前台+后台模式开发 网站前台: 用户注册, 登录 搜索音乐,音乐欣赏(可以在线进行播放) 用户登陆时选择相关感兴趣的音乐风格 音乐收藏 音乐推荐算法:(重点) 本课题需要大量用户行为(如播放记录、收藏列表)、音乐特征(如音频特征、歌曲元数据)等数据 (1)根据用户之间相似性或关联性,给一个用户推荐与其相似或有关联的其他用户所感兴趣的音乐; (2)根据音乐之间的相似性或关联性,给一个用户推荐与其感兴趣的音乐相似或有关联的其他音乐。 基于用户的推荐和基于物品的推荐 其中基于用户的推荐是基于用户的相似度找出相似相似用户,然后向目标用户推荐其相似用户喜欢的东西(和你类似的人也喜欢**东西); 而基于物品的推荐是基于物品的相似度找出相似的物品做推荐(喜欢该音乐的人还喜欢了**音乐); 管理员 管理员信息管理 注册用户管理,审核 音乐爬虫(爬虫方式爬取网站音乐数据) 音乐信息管理(上传歌曲MP3,以便前台播放) 音乐收藏管理 用户 用户资料修改 我的音乐收藏 完整前后端源码,部署后可正常运行! 环境说明 开发语言:python后端 python版本:3.7 数据库:mysql 5.7+ 数据库工具:Navicat11+ 开发软件:pycharm
MPU6050是一款广泛应用在无人机、机器人和运动设备中的六轴姿态传感器,它集成了三轴陀螺仪和三轴加速度计。这款传感器能够实时监测并提供设备的角速度和线性加速度数据,对于理解物体的动态运动状态至关重要。在Arduino平台上,通过特定的库文件可以方便地与MPU6050进行通信,获取并解析传感器数据。 `MPU6050.cpp`和`MPU6050.h`是Arduino库的关键组成部分。`MPU6050.h`是头文件,包含了定义传感器接口和函数声明。它定义了类`MPU6050`,该类包含了初始化传感器、读取数据等方法。例如,`begin()`函数用于设置传感器的工作模式和I2C地址,`getAcceleration()`和`getGyroscope()`则分别用于获取加速度和角速度数据。 在Arduino项目中,首先需要包含`MPU6050.h`头文件,然后创建`MPU6050`对象,并调用`begin()`函数初始化传感器。之后,可以通过循环调用`getAcceleration()`和`getGyroscope()`来不断更新传感器读数。为了处理这些原始数据,通常还需要进行校准和滤波,以消除噪声和漂移。 I2C通信协议是MPU6050与Arduino交互的基础,它是一种低引脚数的串行通信协议,允许多个设备共享一对数据线。Arduino板上的Wire库提供了I2C通信的底层支持,使得用户无需深入了解通信细节,就能方便地与MPU6050交互。 MPU6050传感器的数据包括加速度(X、Y、Z轴)和角速度(同样为X、Y、Z轴)。加速度数据可以用来计算物体的静态位置和动态运动,而角速度数据则能反映物体转动的速度。结合这两个数据,可以进一步计算出物体的姿态(如角度和角速度变化)。 在嵌入式开发领域,特别是使用STM32微控制器时,也可以找到类似的库来驱动MPU6050。STM32通常具有更强大的处理能力和更多的GPIO口,可以实现更复杂的控制算法。然而,基本的传感器操作流程和数据处理原理与Arduino平台相似。 在实际应用中,除了基本的传感器读取,还可能涉及到温度补偿、低功耗模式设置、DMP(数字运动处理器)功能的利用等高级特性。DMP可以帮助处理传感器数据,实现更高级的运动估计,减轻主控制器的计算负担。 MPU6050是一个强大的六轴传感器,广泛应用于各种需要实时运动追踪的项目中。通过 Arduino 或 STM32 的库文件,开发者可以轻松地与传感器交互,获取并处理数据,实现各种创新应用。博客和其他开源资源是学习和解决问题的重要途径,通过这些资源,开发者可以获得关于MPU6050的详细信息和实践指南
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值