题意:给一棵树,并给定各个点权的值,然后有3种操作:
I C1 C2 K : 把 C1 与 C2 的路径上的所有点权值加上 K
D C1 C2 K:把 C1 与 C2 的路径上的所有点权值减去 K
Q C:查询节点编号为C的权值。
思路:树链剖分.............一开始线段树写sb了wa了一下午.............正好又练习了一下线段树........
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<vector>
#include<map>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<ctime>
#define eps 1e-6
#define LL long long
#define pii (pair<int, int>)
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
const int maxn = 50005;
const int INF = 1400000000;
int addv[maxn*4], maxv[maxn*4];
int W[maxn];
void maintain(int o, int L, int R) {
int lc = o*2, rc = o*2+1;
maxv[o] = 0;
if(R > L) { //考虑左右子树
maxv[o] = max(maxv[lc], maxv[rc]);
}
maxv[o] += addv[o];//考虑add操作
}
void update(int o, int L, int R, int v, int yl, int yr) {
int lc = o*2, rc = o*2+1;
if(yl <= L && yr >= R) { //递归边界
addv[o] += v; //累加边界的add值
} else {
int M = L + (R-L)/2;
if(yl <= M) update(lc, L, M, v, yl, yr);
if(yr > M) update(rc, M+1, R, v, yl, yr);
}
maintain(o, L, R); //递归结束前重新计算本节点的附加信息
}
int query(int o, int L, int R, int add, int yl, int yr) {
int ans = -INF;
if(yl <= L && yr >= R) {
return maxv[o] + add;
} else {
int M = L + (R-L)/2;
if(yl <= M) ans = max(ans, query(o*2, L, M, add + addv[o], yl, yr));
if(yr > M) ans = max(ans, query(o*2+1, M+1, R, add + addv[o], yl, yr));
}
return ans;
}
int n, gan, q, tot;
vector<int> G[maxn];
int siz[maxn], son[maxn], dep[maxn], top[maxn], fa[maxn], pos[maxn], arc[maxn];
void init() {
for(int i = 1; i <= n; i++) G[i].clear();
tot = 0;
memset(son, 0, sizeof(son));
memset(addv, 0, sizeof(addv));
memset(maxv, 0, sizeof(maxv));
}
void dfs(int cur, int f) {
siz[cur] = 1;
int tmp = 0;
for(int i = 0; i < G[cur].size(); i++) {
int u = G[cur][i];
if(u == f) continue;
dep[u] = dep[cur] + 1;
fa[u] = cur;
dfs(u, cur);
siz[cur] += siz[u];
if(siz[u] > tmp) son[cur] = u, tmp = siz[u];
}
}
void dfs2(int cur, int tp) {
top[cur] = tp;
pos[cur] = ++tot;
arc[tot] = cur;
if(son[cur]) dfs2(son[cur], tp);
for(int i = 0; i < G[cur].size(); i++) {
int u = G[cur][i];
if(u==son[cur] || u==fa[cur]) continue;
dfs2(u, u);
}
}
void modify(int u, int v, int d) {
int fu = top[u], fv = top[v];
while(fu != fv) {
if(dep[fu]<dep[fv]) swap(fu, fv), swap(u, v);
update(1, 1, n, d, pos[fu], pos[u]);
u = fa[fu]; fu = top[u];
}
if(dep[u]<dep[v]) swap(u, v);
update(1, 1, n, d, pos[v], pos[u]);
}
void Build(int o, int L, int R) {
if(L == R) maxv[o]=W[arc[L]], addv[o]+=maxv[o];
else {
int M = L + (R-L)/2;
Build(2*o, L, M); Build(2*o+1, M+1, R);
maxv[o] = max(maxv[2*o], maxv[2*o+1]);
}
}
int main() {
//freopen("input.txt", "r", stdin);
while(scanf("%d%d%d", &n, &gan, &q)==3) {
init();
for(int i = 1; i <= n; i++) scanf("%d", &W[i]);
for(int i = 1; i <= n-1; i++) {
int u, v; scanf("%d%d", &u, &v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs(1, 0);
dfs2(1, 1);
Build(1, 1, n);
char op[10];
while(q--) {
scanf("%s", op);
int u, v, d;
if(op[0] == 'Q') {
scanf("%d", &u);
printf("%d\n", query(1, 1, n, 0, pos[u], pos[u]));
}
else if(op[0] == 'D'){
scanf("%d%d%d", &u, &v, &d);
modify(u, v, -d);
}
else {
scanf("%d%d%d", &u, &v, &d);
modify(u, v, d);
}
}
}
return 0;
}