537. Complex Number Multiplication

本文介绍了一种方法,用于计算两个复数字符串的乘积,并将其结果转换为指定形式的字符串。通过分离实部与虚部并利用C++字符串操作函数简化代码实现。

一、题目描述

给定两个表示复数的字符串。

返回它们乘积的字符串,注意根据定义 i2=1

例1:

Input: "1+1i", "1+1i"
Output: "0+2i"
Explanation: (1 + i) * (1 + i) = 1 + i2 + 2 * i = 2i, and you need convert it to the form of 0+2i.

例2:

Input: "1+-1i", "1+-1i"
Output: "0+-2i"
Explanation: (1 - i) * (1 - i) = 1 + i2 - 2 * i = -2i, and you need convert it to the form of 0+-2i.

函数原型:

string complexNumberMultiply(string a, string b)

二、编程思路

本题思路相对简单。对于输入字符串 a ,首先根据加号的位置将复数的实部与虚部分离,将其转为实部与虚部的整型值 real1 img1 。同样将 b 转化为 real2 img2 。则结果的 real img 为:

real=real1real2img1img2;img=real1img2+real2img1;

本题中使用c++中string的库函数可以极大地简化代码:
- find_first_of:寻找字符串中第一此出现子字符串的位置。
- substr:截取字符串的一部分子串,注意第一个参数是开始坐标,第二个参数为截取子串的长度。
- stoi:将字符串转化为整型数。
- to_string:将数字类型转为字符串。

三、程序设计

class Solution {
public:
    inline void str2comp(const string& str,int &real,int &img){
        int add_idx=str.find_first_of("+");
        // cout<<add_idx<<endl;
        real=stoi(str.substr(0,add_idx));
        img=stoi(str.substr(add_idx+1,str.size()-add_idx));
        // cout<<real<<" "<<img<<endl;
        return;
    }
    inline void comp2str(string &str,const int& real,const int &img){
        str=to_string(real)+"+"+to_string(img)+"i";
        return;
    }
    string complexNumberMultiply(string a, string b) {
        int real1,img1,real2,img2,real,img;
        string str;
        str2comp(a,real1,img1);
        str2comp(b,real2,img2);
        real=real1*real2-img1*img2;
        img=real1*img2+real2*img1;
        comp2str(str,real,img);
        // cout<<str;
        // cout<<real<<" "<<img<<endl;
        return str;
    }
};

四、参考资料

查博客不如看文档:cplusplus

1. Problem Description: A complex number is a number of the form a +bi, where a and b are real numbers and i is √-1 The numbers a and b are known as the real part and imaginary part of the complex number, respectively. You can perform addition, subtraction, multiplication, and division for complex numbers using the following formula: a+bi+c+di=(a+c)+(b+d)i a+bi-(c+di)=(a-c)+(b-d)i 第2页共2页 (a+bi)*(c+di)=(ac-bd)+(bc+ad)i (a+bi)/c+di)=(ac+bd)/c²+d²)+(bc-ad)i/(c²+d²) You can also obtain the absolute value for a complex number using the following formula: latbil=√a²+b (A complex number can be interpreted as a point on a plane by identifying the (a, b) values as the coordinates of the point. The absolute value of the complex number corresponds to the distance of the point to the origin, as shown in Figure 13.12b.) Design a class named Complex for representing complex numbers and the methods add, subtract, multiply, divide, abs for performing complex-number operations, and override toString method for returning a string representation for a complex number. The toString method returns a + bi as a string. If b is 0, it simply returns a. Provide three constructors Complex(a, b), Complex(a), and Complex(). Complex() creates a Complex object for number 0 and Complex(a) creates a Complex object with 0 for b. Also provide the getRealPart() and getlmaginaryPart() methods for returning the real and imaginary part of the complex number, respectively. Your Complex class should also implement the Cloneable interface. Write a test program that prompts the user to enter two complex numbers and display the result of their addition, subtraction, multiplication, and division. Here is a sample run: <Output> Enter the first complex number: 3.5 5.5 Enter the second complex number:-3.5 1 (3.5 + 5.5i) +(-3.5 + 1.0i)= 0.0 + 6.5 (3.5 + 5.5i)-(-3.5 + 1.0i)= 7.0 + 4.5i (3.5 + 5.5i)*(-3.5 + 1.0i) =-17.75 +-15.75i (3.5 + 5.5i) /(-3.5 + 1.0i)=-0.5094 +-1.7i |3.5 + 5.5il = 6.519202405202649 <End Output>
06-09
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值