A - How far away ?
HDU - 2586
题意:给出一棵树,树上的边有权值,查询两个点之间的最短权值和
LCA倍增
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<stack>
#include<cstdlib>
#include<queue>
#include<set>
#include<string.h>
#include<vector>
#include<deque>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f3f3f3f3f
#define inf 0x3f3f3f3f
#define eps 1e-4
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
typedef long long LL;
typedef long long ll;
const int maxn = 4e4 + 5;
const int mod = 998244353;
int cnt,DEG = 30;
int vis[maxn],head[maxn],dep[maxn],fa[maxn][30],dis[maxn];
struct EDGE {
int next,to,v;
}edge[maxn * 2];
void addedge(int x,int y,int z) {
edge[++cnt].to = y;
edge[cnt].v = z;
edge[cnt].next = head[x];
head[x] = cnt;
}
void init() {
cnt = 0;
memset(vis,0,sizeof vis);
memset(head,-1,sizeof head);
memset(dep,0,sizeof dep);
memset(dis,0,sizeof dis);
}
void bfs(int root) {
queue<int>que;
dep[root] = 0;
fa[root][0] = root;
que.push(root);
while(!que.empty()) {
int tmp = que.front(); que.pop();
for(int i = 1; i < DEG; i++) fa[tmp][i] = fa[fa[tmp][i - 1]][i - 1];
for(int i = head[tmp]; i != -1; i = edge[i].next) {
int v = edge[i].to;
if(v == fa[tmp][0]) continue;
dep[v] = dep[tmp] + 1;
dis[v] = dis[tmp] + edge[i].v;
fa[v][0] = tmp;
que.push(v);
}
}
}
int LCA(int u,int v) {
if(dep[u] > dep[v]) swap(u,v);
int hu = dep[u],hv = dep[v],tu = u,tv = v;
for(int det = hv - hu, i = 0; det; det >>= 1, i++) if(det & 1) tv = fa[tv][i];
if(tu == tv) return tu;
for(int i = DEG - 1; i >= 0; i--) {
if(fa[tu][i] == fa[tv][i]) continue;
tu = fa[tu][i];
tv = fa[tv][i];
}
return fa[tu][0];
}
int main()
{
int t;
scanf("%d",&t);
while (t -- ) {
init();
int n, m;
scanf("%d %d",&n,&m);
for(int i = 1; i < n; i++) {
int u,v,k;
scanf("%d %d %d",&u,&v,&k);
vis[v] = 1;
addedge(u,v,k);
addedge(v,u,k);
}
int root;
for(int i = 1; i <= n; i++ ) {
if(vis[i] == 0) {
root = i;
break;
}
}
bfs(root);
for(int i = 1; i <= m; i++) {
int a,b;
scanf("%d %d",&a,&b);
int ans = dis[a] + dis[b] - 2 * dis[LCA(a,b)];
printf("%d\n",ans);
}
}
}
B - Distance Queries
POJ - 1986
LCA倍增模版,加注释!!
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<stack>
#include<cstdlib>
#include<queue>
#include<set>
#include<string.h>
#include<vector>
#include<deque>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f3f3f3f3f
#define inf 0x3f3f3f3f
#define eps 1e-4
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
typedef long long LL;
typedef long long ll;
const int maxn = 4e4 + 5;
const int mod = 998244353;
int cnt,DEG = 30;
int vis[maxn],head[maxn],dep[maxn],fa[maxn][30],dis[maxn];
//dep深度数组 fa[i][j]表示结点 i 的第2 ^ j个祖先
//dis[i] root到任意的一个i结点的距离
struct EDGE {
int next,to,v;
}edge[maxn * 2];
void addedge(int x,int y,int z) {
edge[++cnt].to = y;
edge[cnt].v = z;
edge[cnt].next = head[x];
head[x] = cnt;
}
void init() {
cnt = 0;
memset(vis,0,sizeof vis);
memset(head,-1,sizeof head);
memset(dep,0,sizeof dep);
memset(dis,0,sizeof dis);
memset(fa,0,sizeof fa);
}
void bfs(int root) {
queue<int>que;
dep[root] = 0; //根节点的深度为0
fa[root][0] = root;
que.push(root);
while(!que.empty()) {
int tmp = que.front(); que.pop();
for(int i = 1; i < DEG; i++)
fa[tmp][i] = fa[fa[tmp][i - 1]][i - 1]; //tmp这个点的2 ^ i的祖先就是 tmp的 2 ^ (i - 1)的祖先这个点的 2 ^ (i - 1)的祖先
for(int i = head[tmp]; i != -1; i = edge[i].next) {
int v = edge[i].to;
if(v == fa[tmp][0]) continue;
dep[v] = dep[tmp] + 1;
dis[v] = dis[tmp] + edge[i].v; //dis距离数组的更新
fa[v][0] = tmp;
que.push(v);
}
}
}
int LCA(int u,int v) {
if(dep[u] > dep[v]) swap(u,v); //使得v的深度比较大
int hu = dep[u],hv = dep[v],tu = u,tv = v;
for(int det = hv - hu, i = 0; det; det >>= 1, i++)
if(det & 1)
tv = fa[tv][i];
if(tu == tv)
return tu;
for(int i = DEG - 1; i >= 0; i--) {
if(fa[tu][i] == fa[tv][i]) continue;
tu = fa[tu][i];
tv = fa[tv][i];
}
return fa[tu][0];
}
int main() {
init();
int n, m;
while (~scanf("%d %d", &n, &m)) {
for (int i = 1; i <= m; i++) {
int u, v, k;
char s[10];
scanf("%d %d %d %s", &u, &v, &k, s);
vis[v] = 1;
addedge(u, v, k);
addedge(v, u, k);
}
int root;
for (int i = 1; i <= n; i++) {
if (vis[i] == 0) {
root = i;
break;
}
}
bfs(root);
int k;
scanf("%d", &k);
for (int i = 1; i <= k; i++) {
int a, b;
scanf("%d %d", &a, &b);
int ans = dis[a] + dis[b] - 2 * dis[LCA(a, b)];
printf("%d\n", ans);
}
}
}
C - Connections between cities
HDU - 2874
森林求LCA
倍增 + 并查集
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<stack>
#include<cstdlib>
#include<queue>
#include<set>
#include<string.h>
#include<vector>
#include<deque>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f3f3f3f3f
#define inf 0x3f3f3f3f
#define eps 1e-4
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
typedef long long LL;
typedef long long ll;
const int maxn = 1e5 + 5;
const int mod = 998244353;
struct Edge {
int to,next,v;
}edge[maxn * 2];
const int DEG = 30;
int head[maxn],dep[maxn],fa[maxn][DEG],dis[maxn];
bool vis[maxn];
int pre[maxn];
int tot;
void init() {
tot = 0;
memset(dis,0,sizeof dis);
memset(head,-1,sizeof head);
memset(vis,false,sizeof vis);
memset(dep,0,sizeof dep);
}
int find(int x) {
if(pre[x] != x)
return pre[x] = find(pre[x]);
return x;
}
void combine(int x,int y) {
int fx = find(x);
int fy = find(y);
if(fx != fy) {
pre[fx] = fy;
}
}
void addedge(int u,int v,int z) {
edge[tot].to = v;
edge[tot].next = head[u];
edge[tot].v = z;
head[u] = tot++;
}
void BFS(int root) {
queue<int>que;
dep[root] = 0;
fa[root][0] = root;
que.push(root);
while(!que.empty()) {
int tmp = que.front(); que.pop();
for(int i = 1; i < DEG; i++) fa[tmp][i] = fa[fa[tmp][i - 1]][i - 1];
for(int i = head[tmp]; i != -1; i = edge[i].next) {
int v = edge[i].to;
if(v == fa[tmp][0]) continue;
dep[v] = dep[tmp] + 1;
dis[v] = dis[tmp] + edge[i].v;
fa[v][0] = tmp;
que.push(v);
}
}
}
int LCA(int u,int v) {
if(dep[u] > dep[v]) swap(u,v);
int hu = dep[u],hv = dep[v];
int tu = u,tv = v;
for(int det = hv - hu,i = 0; det ; det >>= 1, i++) if(det & 1) tv = fa[tv][i];
if(tu == tv) return tu;
for(int i = DEG - 1; i >= 0; i--) {
if(fa[tu][i] == fa[tv][i]) continue;
tu = fa[tu][i];
tv = fa[tv][i];
}
return fa[tu][0];
}
int main() {
int n, m, k;
while(~scanf("%d %d %d",&n,&m,&k)) {
init();
for (int i = 1; i <= n; i++)
pre[i] = i;
for (int i = 0; i < m; i++) {
int a, b, c;
scanf("%d %d %d", &a, &b, &c);
addedge(a, b, c);
addedge(b, a, c);
combine(a, b);
vis[b] = true;
}
int root;
for (int i = 1; i <= n; i++) {
if (vis[i] == false) {
root = i;
break;
}
}
for (int i = 1; i <= n; i++)
if (pre[i] == i)
BFS(i);
while (k--) {
int a, b;
scanf("%d %d", &a, &b);
if (find(a) != find(b))
puts("Not connected");
else {
int ans = dis[a] + dis[b] - 2 * dis[LCA(a, b)];
printf("%d\n", ans);
}
}
}
}
D - Design the city
ZOJ - 3195
题意:求树上三点间的最短距离。
思路:ans=(dis(a,b)+dis(a,c)+dis(b,c))/2
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<stack>
#include<cstdlib>
#include<queue>
#include<set>
#include<string.h>
#include<vector>
#include<deque>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f3f3f3f3f
#define inf 0x3f3f3f3f
#define eps 1e-4
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
typedef long long LL;
typedef long long ll;
const int maxn = 5e4 + 5;
const int mod = 998244353;
int cnt,DEG = 30;
int vis[maxn],head[maxn],dep[maxn],fa[maxn][30],dis[maxn];
struct EDGE {
int next,to,v;
}edge[maxn * 2];
void addedge(int x,int y,int z) {
edge[++cnt].to = y;
edge[cnt].v = z;
edge[cnt].next = head[x];
head[x] = cnt;
}
void init() {
cnt = 0;
memset(vis,0,sizeof vis);
memset(head,-1,sizeof head);
memset(dep,0,sizeof dep);
memset(dis,0,sizeof dis);
}
void bfs(int root) {
queue<int>que;
dep[root] = 0;
fa[root][0] = root;
que.push(root);
while(!que.empty()) {
int tmp = que.front(); que.pop();
for(int i = 1; i < DEG; i++) fa[tmp][i] = fa[fa[tmp][i - 1]][i - 1];
for(int i = head[tmp]; i != -1; i = edge[i].next) {
int v = edge[i].to;
if(v == fa[tmp][0]) continue;
dep[v] = dep[tmp] + 1;
dis[v] = dis[tmp] + edge[i].v;
fa[v][0] = tmp;
que.push(v);
}
}
}
int LCA(int u,int v) {
if(dep[u] > dep[v]) swap(u,v);
int hu = dep[u],hv = dep[v],tu = u,tv = v;
for(int det = hv - hu, i = 0; det; det >>= 1, i++) if(det & 1) tv = fa[tv][i];
if(tu == tv) return tu;
for(int i = DEG - 1; i >= 0; i--) {
if(fa[tu][i] == fa[tv][i]) continue;
tu = fa[tu][i];
tv = fa[tv][i];
}
return fa[tu][0];
}
int main() {
int n, m;
int ca = 0;
while (~scanf("%d", &n)) {
init();
if(ca > 0)printf("\n");
ca++;
for (int i = 1; i < n; i++) {
int u, v, k;
scanf("%d %d %d", &u, &v, &k);
vis[v] = 1;
addedge(u, v, k);
addedge(v, u, k);
}
int root;
for (int i = 0; i < n; i++) {
if (vis[i] == 0) {
root = i;
break;
}
}
scanf("%d",&m);
bfs(root);
for (int i = 1; i <= m; i++) {
int a, b, c;
scanf("%d %d %d", &a, &b, &c);
int ans1 = dis[a] + dis[b] - 2 * dis[LCA(a, b)];
int ans2 = dis[a] + dis[c] - 2 * dis[LCA(a,c)];
int ans3 = dis[b] + dis[c] - 2 * dis[LCA(b,c)];
printf("%d\n", (ans1 + ans2 + ans3) / 2);
}
}
}
E - Network
HDU - 3078
题意:问你u,v最短路上所有节点权值的第k大
思路:就是u->lca(u,v)和v->lca(u,v)的所有节点权值放入数组,sort一下,输出第k大就行(这也太暴力了)
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<stack>
#include<cstdlib>
#include<queue>
#include<set>
#include<string.h>
#include<vector>
#include<deque>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f3f3f3f3f
#define inf 0x3f3f3f3f
#define eps 1e-4
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
typedef long long LL;
typedef long long ll;
const int maxn = 8e4 + 5;
const int mod = 998244353;
int cnt,DEG = 30;
int vis[maxn],head[maxn],dep[maxn],fa[maxn][30],dis[maxn];
int w[maxn],path[maxn];
struct EDGE {
int next,to;
}edge[maxn * 2];
void addedge(int x,int y) {
edge[++cnt].to = y;
edge[cnt].next = head[x];
head[x] = cnt;
}
void init() {
cnt = 0;
memset(vis, 0, sizeof vis);
memset(head, -1, sizeof head);
memset(dep, 0, sizeof dep);
memset(dis, 0, sizeof dis);
memset(path, 0, sizeof path);
}
void bfs(int root) {
queue<int> que;
dep[root] = 0;
fa[root][0] = root;
que.push(root);
while (!que.empty()) {
int tmp = que.front();
que.pop();
for (int i = 1; i < DEG; i++) fa[tmp][i] = fa[fa[tmp][i - 1]][i - 1];
for (int i = head[tmp]; i != -1; i = edge[i].next) {
int v = edge[i].to;
if (v == fa[tmp][0]) continue;
dep[v] = dep[tmp] + 1;
fa[v][0] = tmp;
que.push(v);
}
}
}
int LCA(int u,int v) {
if (dep[u] > dep[v]) swap(u, v);
int hu = dep[u], hv = dep[v], tu = u, tv = v;
for (int det = hv - hu, i = 0; det; det >>= 1, i++) if (det & 1) tv = fa[tv][i];
if (tu == tv) return tu;
for (int i = DEG - 1; i >= 0; i--) {
if (fa[tu][i] == fa[tv][i]) continue;
tu = fa[tu][i];
tv = fa[tv][i];
}
return fa[tu][0];
}
bool cmp(int h1,int h2) {
return h1 > h2;
}
int main() {
int n, m;
while (~scanf("%d %d", &n, &m)) {
init();
for(int i = 1; i <= n; i++) scanf("%d", &w[i]);
for (int i = 1; i < n; i++) {
int u, v;
scanf("%d %d", &u, &v);
vis[v] = 1;
addedge(u, v);
addedge(v, u);
}
int root;
for (int i = 1; i <= n; i++) {
if (vis[i] == 0) {
root = i;
break;
}
}
bfs(root);
for (int i = 1; i <= m; i++) {
int k,a, b;
scanf("%d %d %d", &k, &a, &b);
if(k == 0)
w[a] = b;
else {
int lca = LCA(a,b);
int num = 0;
for(int i = a; i != lca; i = fa[i][0]) path[++num] = w[i];
for(int i = b; i != lca; i = fa[i][0]) path[++num] = w[i];
path[++num] = w[lca];
if(num < k) {
printf("invalid request!\n");
} else {
sort(path + 1,path + 1 + num,cmp);
printf("%d\n",path[k]);
}
}
}
}
}
K - Nearest Common Ancestors
POJ - 1330
ST表求LCA
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<stack>
#include<cstdlib>
#include<queue>
#include<set>
#include<string.h>
#include<vector>
#include<deque>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f3f3f3f3f
#define inf 0x3f3f3f3f
#define eps 1e-4
#define bug printf("*********\n")
#define debug(x) cout<<#x"=["<<x<<"]" <<endl
typedef long long LL;
typedef long long ll;
const int maxn = 1e4 + 5;
const int mod = 998244353;
int rmq[2 * maxn]; // 欧拉序列对应的深度序列
struct ST {
int mm[2 * maxn];
int dp[2 * maxn][20];
void init(int n) {
mm[0] = -1;
for (int i = 1; i <= n; i++) {
mm[i] = ((i & (i - 1)) == 0) ? mm[i - 1] + 1 : mm[i - 1];
dp[i][0] = i;
}
for (int j = 1; j <= mm[n]; j++)
for (int i = 1; i + (1 << j) - 1 <= n; i++)
dp[i][j] =
rmq[dp[i][j - 1]] < rmq[dp[i + (1 << (j - 1))][j - 1]] ? dp[i][j - 1] : dp[i + (1 << (j - 1))][
j - 1];
}
int query(int a, int b) {
if (a > b) swap(a, b);
int k = mm[b - a + 1];
return rmq[dp[a][k]] <= rmq[dp[b - (1 << k) + 1][k]] ? dp[a][k] : dp[b - (1 << k) + 1][k];
}
}st;
struct Edge {
int to, next;
}edge[maxn * 2];
int tot,head[maxn * 2];
int F[maxn * 2]; //欧拉序列 即dfs遍历的顺序
int P[maxn]; //表示点i在F中第一次出现的位置
int cnt;
void init() {
tot = 0;
memset(head, -1, sizeof head);
}
void addedge(int u,int v) {
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u,int pre,int dep) {
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for (int i = head[u]; i != -1; i = edge[i].next) {
int v = edge[i].to;
if (v == pre) continue;
dfs(v, u, dep + 1);
F[++cnt] = u;
rmq[cnt] = dep;
}
}
void LCA_init(int root,int node_num) {
cnt = 0;
dfs(root, root, 0);
st.init(2 * node_num - 1);
}
int query_lca(int u,int v) {
return F[st.query(P[u], P[v])];
}
bool flag[maxn];
int main() {
int t;
scanf("%d", &t);
while (t--) {
int n;
scanf("%d", &n);
init();
memset(flag, 0, sizeof flag);
int u, v;
for (int i = 1; i < n; i++) {
scanf("%d %d", &u, &v);
addedge(u, v);
addedge(v, u);
flag[v] = true;
}
int root;
for (int i = 1; i <= n; i++)
if (!flag[i]) {
root = i;
break;
}
LCA_init(root, n);
scanf("%d %d", &u, &v);
printf("%d\n", query_lca(u, v));
}
}