Problem Description

Input
The first line of input gives the number of cases, T. T test cases follow, each on a separate line. Each test case contains one positive integer n. (1 <= n <= 10^9)
Output
For each input case, you should output the answer in one line.
Sample Input
3 1 2 5
Sample Output
9 97 841
Source
这道题目是求((sqrt(2)+sqrt(3))^2n)mod1024向下取整,需要推到一下····
分析:
所以可以用矩阵快速幂很快的求出来,又因为(5+2*sqrt(6))^n+(5-2*sqrt(6))^n=An+Bn*sqrt(6)+An-Bn*sqrt(6)=2An,由于(5-2*sqrt(6))^n是一个趋于0的数·····
由于精度向下取整所以最后的结果就是(5+2*sqrt(6))^n=2An-1;
代码如下:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define Max_dimension 2
#define mod 1024
typedef int Matrix_type;
typedef _int64 Max_int_type;
typedef Matrix_type Matrix[Max_dimension][Max_dimension];
int ndim=2;
Matrix res;
void m_zero(Matrix x)
{
memset(x,0,sizeof(Matrix_type)*Max_dimension*Max_dimension);
}
void m_one(Matrix x)
{
m_zero(x);
for(int i=0;i<ndim;i++)
x[i][i]=1;
}
void m_copy(Matrix src,Matrix dest)
{
memcpy(dest,src,sizeof(Matrix_type)*Max_dimension*Max_dimension);
}
//c=a*b
void m_multiple(Matrix a,Matrix b,Matrix c)
{
int i,j,k;
for(i=0;i<ndim;i++)
for(j=0;j<ndim;j++)
{
c[i][j]=0;
for(k=0;k<ndim;k++)
{
c[i][j]+=(a[i][k]*b[k][j])%mod;
c[i][j]%=mod;
}
}
}
//y=x^n
void m_pow(Matrix x, unsigned int n, Matrix y)
{
Matrix temp,temp_x;
m_one(y);
m_copy(x,temp_x);
while(n)
{
if (n&1)
{
m_multiple(temp_x,y,temp);
m_copy(temp,y);
}
if (n >>= 1)
{
m_multiple(temp_x,temp_x,temp);
m_copy(temp,temp_x);
}
}
}
int main()
{
//freopen("in.txt","r",stdin);
int T,m;
scanf("%d",&T);
Matrix ans;
res[0][0]=5;
res[0][1]=12;
res[1][0]=2;
res[1][1]=5;
while(T--)
{
scanf("%d",&m);
if(m==0)
{
printf("1\n");
continue;
}
if(m==1)
{
printf("9\n");
continue;
}
m_pow(res,m-1,ans);//算出An-1,Bn-1
int num=ans[0][0]*5+ans[1][0]*12;
printf("%d\n",(num*2-1)%mod);
}
return 0;
}