hdu 1005 Number Sequence 矩阵乘法

本文介绍了一种使用矩阵快速幂解决特定序列问题的方法,包括定义矩阵操作、实现矩阵快速幂算法,并通过实例展示了其应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

难度:3

[f(n) , f(n-1)] = [f(n-1) , f(n-2)] * [A,1;B,0]

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 2;
int n , MOD;
struct Matrix {
    int n , m;
    int a[N][N];
    Matrix() {}
    Matrix(int _n,int _m):n(_n),m(_m){};
    void intput() {
        for(int i=0;i<n;i++)
        for(int j=0;j<m;j++)
            scanf("%d",&a[i][j]);
    }
    Matrix operator + (const Matrix &b) {
        Matrix tmp = Matrix(n,m);
        for(int i=0;i<n;i++)
        for(int j=0;j<m;j++)
            tmp.a[i][j] = a[i][j] + b.a[i][j];
        return tmp;
    }
    Matrix operator - (const Matrix &b) {
        Matrix tmp = Matrix(n,m);
        for(int i=0;i<n;i++)
        for(int j=0;j<m;j++)
            tmp.a[i][j] = a[i][j] - b.a[i][j];
        return tmp;
    }
    Matrix operator * (const Matrix &b) {
        Matrix tmp = Matrix(n,b.m);
        for(int i=0;i<n;i++)
        for(int j=0;j<b.m;j++)
            tmp.a[i][j] = 0;
        for(int i=0;i<n;i++)
        for(int j=0;j<b.m;j++)
        for(int k=0;k<m;k++) {
            tmp.a[i][j] += a[i][k]*b.a[k][j];
            tmp.a[i][j] %= MOD;
        }
        return tmp;
    }
};

Matrix operator ^ (Matrix a , int p) {
    Matrix ret = Matrix(a.n,a.m);
    for(int i=0;i<a.n;i++)
    for(int j=0;j<a.m;j++)
        ret.a[i][j] = (i == j ? 1 : 0);
    while(p) {
        if(p%2) ret = ret * a;
        a = a * a;
        p /= 2;
    }
    return ret;
}

Matrix A , B;

int a , b;
int main() {
    MOD = 7;
    while(~scanf("%d%d%d" , &a,&b,&n) && a+b+n) {
        if(n <= 2) {
            puts("1"); continue;
        }
        A = Matrix(1 , 2);
        B = Matrix(2 , 2);
        A.a[0][0] = A.a[0][1] = 1;
        B.a[0][0] = a; B.a[0][1] = 1;
        B.a[1][0] = b; B.a[1][1] = 0;
        A = A * (B^(n-2));
        int ans = A.a[0][0] % 7;
        printf("%d\n" , ans);
    }
    return 0;
}


### HDU 2544 题目分析 HDU 2544 是关于最短路径的经典问题,可以通过多种方法解决,其中包括基于邻接矩阵的 Floyd-Warshall 算法。以下是针对该问题的具体解答。 --- #### 基于邻接矩阵的 Floyd-Warshall 实现 Floyd-Warshall 算法是一种动态规划算法,适用于计算任意两点之间的最短路径。它的时间复杂度为 \( O(V^3) \),其中 \( V \) 表示节点的数量。对于本题中的数据规模 (\( N \leq 100 \)),此算法完全适用。 下面是具体的实现方式: ```cpp #include <iostream> #include <algorithm> using namespace std; const int INF = 0x3f3f3f3f; int dist[105][105]; int n, m; void floyd() { for (int k = 1; k <= n; ++k) { // 中间节点 for (int i = 1; i <= n; ++i) { // 起始节点 for (int j = 1; j <= n; ++j) { // 结束节点 if (dist[i][k] != INF && dist[k][j] != INF) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } } } int main() { while (cin >> n >> m && (n || m)) { // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; else dist[i][j] = INF; } } // 输入边的信息并更新邻接矩阵 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; dist[u][v] = min(dist[u][v], w); dist[v][u] = min(dist[v][u], w); // 如果是有向图,则去掉这一行 } // 执行 Floyd-Warshall 算法 floyd(); // 输出起点到终点的最短距离 cout << (dist[1][n] >= INF ? -1 : dist[1][n]) << endl; } return 0; } ``` --- #### 关键点解析 1. **邻接矩阵初始化** 使用二维数组 `dist` 存储每一对节点间的最小距离。初始状态下,设所有节点对的距离为无穷大 (`INF`),而同一节点自身的距离为零[^4]。 2. **输入处理** 对于每条边 `(u, v)` 和权重 `w`,将其存储至邻接矩阵中,并取较小值以防止重边的影响[^4]。 3. **核心逻辑** Floyd-Warshall 的核心在于三重循环:依次尝试通过中间节点优化其他两节点间的距离关系。具体而言,若从节点 \( i \) 到 \( j \) 可经由 \( k \) 达成更优解,则更新对应位置的值[^4]。 4. **边界条件** 若最终得到的结果仍为无穷大(即无法连通),则返回 `-1`;否则输出实际距离[^4]。 --- #### 性能评估 由于题目限定 \( N \leq 100 \),因此 \( O(N^3) \) 的时间复杂度完全可以接受。此外,空间需求也较低,适合此类场景下的应用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值