Hdu-5289 Assignment (二分+RMQ || 单调队列)

本文介绍了一种计算数列中满足特定条件子序列数量的方法,提供了两种不同的算法实现方案:一是利用二分查找和预处理技巧;二是使用双端单调队列来高效地更新和维护子序列的最大和最小值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem Description
Tom owns a company and he is the boss. There are n staffs which are numbered from 1 to n in this company, and every staff has a ability. Now, Tom is going to assign a special task to some staffs who were in the same group. In a group, the difference of the ability of any two staff is less than k, and their numbers are continuous. Tom want to know the number of groups like this.
 

Input
In the first line a number T indicates the number of test cases. Then for each case the first line contain 2 numbers n, k (1<=n<=100000, 0<k<=10^9),indicate the company has n persons, k means the maximum difference between abilities of staff in a group is less than k. The second line contains n integers:a[1],a[2],…,a[n](0<=a[i]<=10^9),indicate the i-th staff’s ability.
 

Output
For each test,output the number of groups.
 

Sample Input
  
2 4 2 3 1 2 4 10 5 0 3 4 5 2 1 6 7 8 9
 

Sample Output
  
5 28
Hint
First Sample, the satisfied groups include:[1,1]、[2,2]、[3,3]、[4,4] 、[2,3]
 

Author
FZUACM
 

Source
2015 Multi-University Training Contest 1

题意:给你一个数列,问你它有多少个子序列满足最大值-最小值小于k.


解法1:枚举起始位置,二分最大有效长度。


#include <cstdio>
#include <iostream>
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) > (b) ? (b) : (a)
using namespace std;
int n,k,T,l[100005][30],r[100005][30],a[100005];
int Log(int x)
{
	int num = 0;
	while(x)
	{
		num++;
		x = x>>1;
	}
	return num-1;
}
int got(int x)
{
	return 1<<x;
}
int gotmax(int x,int y)
{
	int L = Log(y-x+1);
	return max(r[x][L],r[y-got(L)+1][L]);
}
int gotmin(int x,int y)
{
	int L = Log(y-x+1);
	return min(l[x][L],l[y-got(L)+1][L]);
}
bool check(int x,int y)
{
	if(gotmax(x,y)-gotmin(x,y) < k) return true;
	return false;
}
int main() 
{
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d %d",&n,&k);
		long long ans = 0;
		for(int i = 1;i <= n;i++) 
		{
			scanf("%d",&a[i]);
			l[i][0] = a[i];
			r[i][0] = a[i];
		}		
		for(int i = 1;got(i) <= n;i++)
		 for(int j = 1;j+got(i)-1 <= n;j++)
		  {
		  	l[j][i] = min(l[j][i-1],l[j+got(i-1)][i-1]);
		  	r[j][i] = max(r[j][i-1],r[j+got(i-1)][i-1]);
		  }
 		for(int i = 1;i <= n;i++)
		{
			int s = i,t = n;
			while(s != t)
			{
				int mid = (s+t)/2 + 1;
				if(check(i,mid)) s = mid;
				else t = mid-1;
			}
			ans += (s-i+1ll);
		}
		cout<<ans<<endl; 
	}
}



解法2:双端单调队列维护最大最小值。


#include <queue>
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
int n,k,a[100007],T;
int main()
{
	scanf("%d",&T);
	while(T--)
	{
		long long ans = 0;
		deque <int> Max,Min;
		scanf("%d %d",&n,&k);
		for(int i = 1;i <= n;i++) scanf("%d",&a[i]);
		int j = 1;
		for(int i = 1;i <= n;i++)
		{
			while(!Max.empty() && Max.front() < i) Max.pop_front();
			while(!Min.empty() && Min.front() < i) Min.pop_front();
			while(j <=n && (Max.empty() || (abs(a[Max.front()]-a[j]) < k && abs(a[Min.front()]-a[j]) < k)))
			{
				while(!Max.empty() && a[Max.back()] <= a[j]) Max.pop_back();
				while(!Min.empty() && a[Min.back()] >= a[j]) Min.pop_back();
				Max.push_back(j);
				Min.push_back(j);
				j++;
			}	
			ans += j-i;
		}
		cout<<ans<<endl;
	}
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值