HDU 1358——Period(KMP 失配函数)

字符串周期性检测算法
本文介绍了一种用于检测字符串前缀是否具有周期性的算法。通过计算Next数组来判断字符串的每个前缀是否可以视为某个较短字符串的重复,并输出所有满足条件的前缀及其周期。

Period

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2965    Accepted Submission(s): 1486


Problem Description
For each prefix of a given string S with N characters (each character has an ASCII code between 97 and 126, inclusive), we want to know whether the prefix is a periodic string. That is, for each i (2 <= i <= N) we want to know the largest K > 1 (if there is one) such that the prefix of S with length i can be written as AK , that is A concatenated K times, for some string A. Of course, we also want to know the period K.
 

Input
The input file consists of several test cases. Each test case consists of two lines. The first one contains N (2 <= N <= 1 000 000) – the size of the string S. The second line contains the string S. The input file ends with a line, having the number zero on it.
 

Output
For each test case, output “Test case #” and the consecutive test case number on a single line; then, for each prefix with length i that has a period K > 1, output the prefix size i and the period K separated by a single space; the prefix sizes must be in increasing order. Print a blank line after each test case.
 

Sample Input
3 aaa 12 aabaabaabaab 0
 

Sample Output
Test case #1 2 2 3 3 Test case #2 2 2 6 2 9 3 12 4
 


————————————————————————————————————————————————————


题意:

给定一个长度为n的字符串s,求一个最大的整数K>1 ,使得s的前i个字符组成的前缀是某个字符串重复K次得到,输出所有存在K的 i 和对应的 K


思路:

如果一个字串是循环串,那么i%(i-next[i])==0 ,循环的次数为i/(i-next[i]),又k>1 所以next[i]>0


#include<cstdio>
#include<cstring>
#include<iostream>
#include<cstdlib>
#define M  1000000+10
using namespace std;
char str[M];
int f[M];
void get_next(char *p)
{
    int l=strlen(p);
    f[0]=-1;
    int j=-1,i=0;
    while(i<l){
        if(j==-1||p[i]==p[j]){
            i++;
            j++;
            f[i]=j;
        }
        else j=f[j];
    }
}
int main()
{
    int n;
    int cas=1;
    while(scanf("%d",&n),n){
        scanf("%s",str);
        get_next(str);
        printf("Test case #%d\n",cas++);
        for(int i=2;i<=n;++i){
            if(f[i]>0&&i%(i-f[i])==0) printf("%d %d\n",i,i/(i-f[i]));
        }
        printf("\n");
    }
    return 0;
}


















12332

### HDU OJ Problem 2566 Coin Counting Solution Using Simple Enumeration and Generating Function Algorithm #### 使用简单枚举求解硬币计数问题 对于简单的枚举方法,可以通过遍历所有可能的组合方式来计算给定面额下的不同硬币组合数量。这种方法虽然直观但效率较低,在处理较大数值时性能不佳。 ```java import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int[] coins = {1, 2, 5}; // 定义可用的硬币种类 while (scanner.hasNext()) { int targetAmount = scanner.nextInt(); int countWays = findNumberOfCombinations(targetAmount, coins); System.out.println(countWays); } } private static int findNumberOfCombinations(int amount, int[] denominations) { if (amount == 0) return 1; if (amount < 0 || denominations.length == 0) return 0; // 不使用当前面值的情况 int excludeCurrentDenomination = findNumberOfCombinations(amount, subArray(denominations)); // 使用当前面值的情况 int includeCurrentDenomination = findNumberOfCombinations(amount - denominations[0], denominations); return excludeCurrentDenomination + includeCurrentDenomination; } private static int[] subArray(int[] array) { if (array.length <= 1) return new int[]{}; return java.util.Arrays.copyOfRange(array, 1, array.length); } } ``` 此代码实现了通过递归来穷尽每一种可能性并累加结果的方式找到满足条件的不同组合数目[^2]。 #### 利用母函数解决硬币计数问题 根据定义,可以将离散序列中的每一个元素映射到幂级数的一个项上,并利用这些多项式的乘积表示不同的组合情况。具体来说: 设 \( f(x)=\sum_{i=0}^{+\infty}{a_i*x^i}\),其中\( a_i \)代表当总金额为 i 时能够组成的方案总数,则有如下表达式: \[f_1(x)=(1+x+x^2+...)\] 这实际上是一个几何级数,其封闭形式可写作: \[f_1(x)=\frac{1}{(1-x)}\] 同理,对于其他类型的硬币也存在类似的生成函数。因此整个系统的生成函数就是各个单独部分之积: \[F(x)=f_1(x)*f_2(x)...*f_n(x)\] 最终目标是从 F(x) 中提取系数即得到所需的结果。下面给出基于上述理论的具体实现: ```cpp #include<iostream> using namespace std; const int MAXN = 1e4 + 5; int dp[MAXN]; void solve() { memset(dp, 0, sizeof(dp)); dp[0] = 1; // 初始化基础状态 int values[] = {1, 2, 5}, size = 3; for (int j = 0; j < size; ++j){ for (int k = values[j]; k <= 10000; ++k){ dp[k] += dp[k-values[j]]; } } } int main(){ solve(); int T; cin >> T; while(T--){ int n; cin>>n; cout<<dp[n]<<endl; } return 0; } ``` 这段 C++ 程序展示了如何应用动态规划技巧以及生成函数的概念高效地解决问题实例[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值