UVA 1347(POJ 2677)Tour(双调欧几里得旅行商问题)

本文介绍了一种解决双调欧几里得旅行商问题的动态规划方法,该问题要求找到连接一系列按x坐标升序排列的点的最短闭合路径。文章提供了完整的C++实现代码,通过动态规划策略计算从起点出发,先左后右回到起点的最短路径长度。

Tour

                Time Limit:3000MS    Memory Limit:0KB    64bit IO Format:%lld & %llu

Description

Download as PDF

John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane and starts visiting beautiful places. To save money, John must determine the shortest closed tour that connects his destinations. Each destination is represented by a point in the plane pi = < xi, yi > . John uses the following strategy: he starts from the leftmost point, then he goes strictly left to right to the rightmost point, and then he goes strictly right back to the starting point. It is known that the points have distinct x -coordinates.

Write a program that, given a set of n points in the plane, computes the shortest closed tour that connects the points according to John's strategy.

Input

The program input is from a text file. Each data set in the file stands for a particular set of points. For each set of points the data set contains the number of points, and the point coordinates in ascending order of the x coordinate. White spaces can occur freely in input. The input data are correct.

Output

For each set of data, your program should print the result to the standard output from the beginning of a line. The tour length, a floating-point number with two fractional digits, represents the result.


Note: An input/output sample is in the table below. Here there are two data sets. The first one contains 3 points specified by their x and y coordinates. The second point, for example, has the x coordinate 2, and the y coordinate 3. The result for each data set is the tour length, (6.47 for the first data set in the given example).

Sample Input

3 
1 1
2 3
3 1
4 
1 1 
2 3
3 1
4 2

Sample Output

6.47
7.89


题意:典型的动态规划例题。又叫做双调欧几里得旅行商问题。算法导论里面的题目。


思路:

dp[i][j] 表示从 i 到 1,再从1到j的距离。在这个路径上,点 1 到 Pmax(i,j) 点之间的所有点有且仅有经过一次。


dp[i][j] = dp[i-1][j] + dis(i,i-1);

dp[i][i-1] = min (dp[i][i-1], dp[i-1][j] + dis(i, j));


<span style="font-size:18px;">
#include <cstdio>
#include <iostream>
#include <cstring>
#include <cmath>
#include <string>
#include <algorithm>
#include <queue>
#include <stack>
using namespace std;

const int INF = 1<<29;
const int MAXN = 1100;
const double PI = acos(-1.0);
const double e = 2.718281828459;
const double eps = 1e-8;
struct node
{
    double x;
    double y;
}a[MAXN];
double dp[MAXN][MAXN];

int cmp(node a, node b)
{
    return a.x < b.x;
}

double dist(int i, int j)
{
    return sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y));
}

int main()
{
    //freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
    int n;
    while(cin>>n)
    {
        for(int i = 1; i <= n; i++)
        {
            scanf("%lf %lf", &a[i].x, &a[i].y);
        }
        sort(a+1, a+1+n, cmp);
        dp[2][1] = dist(1, 2);
        for(int i = 3; i <= n; i++)
        {
            dp[i][i-1] = INF*1.0;
            for(int j = 1; j < i-1; j++)
            {
                dp[i][i-1] = min(dp[i][i-1], dp[i-1][j]+dist(i, j));
                dp[i][j] = dp[i-1][j]+dist(i-1, i);
            }
        }
        double ans = INF*1.0;
        for(int i = 1; i < n; i++)
        {
            ans = min(ans, dp[n][i]+dist(n, i));
        }
        printf("%.2f\n", ans);
    }
    return 0;
}
</span>




标题基于Python的自主学习系统后端设计与实现AI更换标题第1章引言介绍自主学习系统的研究背景、意义、现状以及本文的研究方法和创新点。1.1研究背景与意义阐述自主学习系统在教育技术领域的重要性和应用价值。1.2国内外研究现状分析国内外在自主学习系统后端技术方面的研究进展。1.3研究方法与创新点概述本文采用Python技术栈的设计方法和系统创新点。第2章相关理论与技术总结自主学习系统后端开发的相关理论和技术基础。2.1自主学习系统理论阐述自主学习系统的定义、特征和理论基础。2.2Python后端技术栈介绍DjangoFlask等Python后端框架及其适用场景。2.3数据库技术讨论关系型和非关系型数据库在系统中的应用方案。第3章系统设计与实现详细介绍自主学习系统后端的设计方案和实现过程。3.1系统架构设计提出基于微服务的系统架构设计方案。3.2核心模块设计详细说明用户管理、学习资源管理、进度跟踪等核心模块设计。3.3关键技术实现阐述个性化推荐算法、学习行为分析等关键技术的实现。第4章系统测试与评估对系统进行功能测试和性能评估。4.1测试环境与方法介绍测试环境配置和采用的测试方法。4.2功能测试结果展示各功能模块的测试结果和问题修复情况。4.3性能评估分析分析系统在高并发等场景下的性能表现。第5章结论与展望总结研究成果并提出未来改进方向。5.1研究结论概括系统设计的主要成果和技术创新。5.2未来展望指出系统局限性并提出后续优化方向。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值