解题思路:
选出速度最大的若干个人,做一次凸包,凸包上的点能够控制无穷大的区域。几个需要注意的地方:
1.凸包边上的点也能控制无穷大的区域。
2.若最大速度为 0 则全部输出0.
3.若两点位置和速度完全一样则这两个点都输出0.
4.做凸包之前要去除位置和速度完全一样的点。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <stack>
#define LL long long
using namespace std;
const int maxn = 500 + 10;
struct Point
{
double x , y;
int id;
Point (double x = 0 , double y = 0,int id = 0) : x (x) , y (y) , id(id) { }
}p[maxn];
int tot , N;
typedef Point Vector;
Vector operator + (Vector A , Vector B) {return Vector(A.x + B.x , A.y + B.y);}
Vector operator - (Vector A , Vector B) {return Vector(A.x - B.x , A.y - B.y);}
double operator * (Vector A , Vector B) {return A.x * B.y - B.x * A.y;}
Vector operator / (Vector A , double p) {return Vector(A.x / p , A.y / p);}
bool operator < (const Point& a , const Point& b) {return a.x < b.x || (a.x == b.x && a.y < b.y);}
const double eps = 1e-10;
int dcmp(double x) { if(fabs(x) < eps) return 0;else return x < 0 ? -1 : 1;}
bool operator == (const Point& a , const Point& b) {return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;}
double Dot(Vector A , Vector B) {return A.x * B.x + A.y * B.y;}
double Cross(Vector A , Vector B) {return A.x * B.y - A.y * B.x;}
Point ch[maxn*2];
double v[maxn];
int ans[maxn];
void ConvexHull()
{
sort(p+1,p+tot+1);
int m = 0;
for(int i=1;i<=tot;i++)
{
while(m >= 2 && (p[i] - ch[m])*(ch[m] - ch[m-1])> 0) --m;
ch[++m] = p[i];
}
int k = m;
for(int i=tot;i>=1;i--)
{
while(m >= k+1 &&(p[i] - ch[m]) * (ch[m] - ch[m-1]) > 0) --m;
ch[++m] = p[i];
}
--m;
for(int i=1;i<=m;i++) ans[ch[i].id] = 1;
for(int i=1;i<=N;i++) printf("%d",ans[i]);
printf("\n");
}
int main()
{
int kcase = 1;
//freopen("1002.in","r",stdin);
//freopen("10.out","w",stdout);
while(scanf("%d",&N)!=EOF && N)
{
double V = 0;
for(int i=1;i<=N;i++)
{
scanf("%lf%lf%lf",&p[i].x,&p[i].y,&v[i]);
p[i].id = i;
V = max(V , v[i]);
}
tot = 0;
if(V){
for(int i=1;i<=N;i++)
{
if(v[i] == V)
{
int flag = 1;
for(int j=1;j<=tot;j++)
{
if(p[i] == p[j])
{
p[j].id = 0;
flag = 0;
break;
}
}
if(flag)
p[++tot] = p[i];
}
}
}
memset(ans,0,sizeof(ans));
printf("Case #%d: ",kcase++);
ConvexHull();
}
return 0;
}