DCGAN+keras生成mnist

前几天决定GAN网络挺有意思的,就找了个keras实现生成mnist数据集的代码来试试。

源代码github:https://github.com/FacelessManipulator/keras-dcgan
讲解:http://blog.youkuaiyun.com/gjq246/article/details/75118751

生成效果如图
这里写图片描述
程序文件名:getMnist.py
头文件:

# -*- coding: utf-8-*-
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Reshape
from keras.layers.core import Activation
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import UpSampling2D
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.layers.core import Flatten
from keras.optimizers import SGD
from keras.datasets import mnist
import numpy as np
from PIL import Image
import argparse
import math

网络搭建

搭建生成网络和判别网络

'''搭建生成网络,输入100,输出28x28'''
def generator_model():
    model = Sequential()
    model.add(Dense(input_dim=100, output_dim=1024))
    model.add(Activation('tanh'))
    model.add(Dense(128*7*7))
    model.add(BatchNormalization())
    model.add(Activation('tanh'))
    model.add(Reshape((7, 7, 128), input_shape=(128*7*7,)))
    model.add(UpSampling2D(size=(2, 2)))
    model.add(Convolution2D(64, 5, 5, border_mode='same'))
    model.add(Activation('tanh'))
    model.add(UpSampling2D(size=(2, 2)))
    model.add(Convolution2D(1, 5, 5, border_mode='same'))
    model.add(Activation('tanh'))
    return model
'''搭建判别网络,输入28x28,输出1'''
def discriminator_model():
    model = Sequential()
    model.add(Convolution2D(
                        64, 5, 5,
                        border_mode='same',
                        input_shape=(28, 28, 1)))
    model.add(Activation('tanh'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Convolution2D(128, 5, 5))
    model.add(Activation('tanh'))
    model.add(MaxPooling2D(pool_size=(2, 2)))
    model.add(Flatten())
    model.add(Dense(1024))
    model.add(Activation('tanh'))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))
    return model

联合生成和判别网络

'''连接生成和判别两个网络'''
def generator_containing_discriminator(generator, discriminator):
    model = Sequential()
    model.add(generator)
    discriminator.trainable = False
    model.add(discriminator)
    return model

模型训练

'''模型训练'''
def train(BATCH_SIZE):
    (X_train, y_train), (X_test, y_test) = mnist.load_data()  # 获取mnist手写字体数据
    X_train = (X_train.astype(np.float32) - 127.5)/127.5
    X_train = X_train.reshape((X_train.shape[0], 1) + X_train.shape[1:])
    discriminator = discriminator_model()  # 初始化判别模型
    generator = generator_model() # 初始化生成模型
    discriminator_on_generator = \
        generator_containing_discriminator(generator, discriminator)  # 联合生成和判别模型
    d_optim = SGD(lr=0.0005, momentum=0.9, nesterov=True)
    g_optim = SGD(lr=0.0005, momentum=0.9, nesterov=True)
    generator.compile(loss='binary_crossentropy', optimizer="SGD")
    discriminator_on_generator.compile(
        loss='binary_crossentropy', optimizer=g_optim)  # 编译生成和判别模型
    discriminator.trainable = True
    discriminator.compile(loss='binary_crossentropy', optimizer=d_optim)  # 编译判别模型
    noise = np.zeros((BATCH_SIZE, 100))
    # 开始训练100步
    for epoch in range(100):
        print("Epoch is", epoch)
        print("Number of batches", int(X_train.shape[0]/BATCH_SIZE))
        for index in range(int(X_train.shape[0]/BATCH_SIZE)):
            for i in range(BATCH_SIZE):
                noise[i, :] = np.random.uniform(-1, 1, 100)
            image_batch = X_train[index*BATCH_SIZE:(index+1)*BATCH_SIZE]
            image_batch = image_batch.transpose((0,2,3,1))
            generated_images = generator.predict(noise, verbose=0)  # 生成图片
            if index % 20 == 0:
                generated_images_tosave = generated_images.transpose((0,3,1,2))
                image = combine_images(generated_images_tosave)
                image = image*127.5+127.5
                Image.fromarray(image.astype(np.uint8)).save(
                    str(epoch)+"_"+str(index)+".png")  # 图片命名
            print(image_batch.shape, generated_images.shape)
            X = np.concatenate((image_batch, generated_images))
            y = [1] * BATCH_SIZE + [0] * BATCH_SIZE
            d_loss = discriminator.train_on_batch(X, y)  # 计算判别模型loss
            print("batch %d d_loss : %f" % (index, d_loss))
            for i in range(BATCH_SIZE):
                noise[i, :] = np.random.uniform(-1, 1, 100)
            discriminator.trainable = False  # 冻结判别模型参数
            g_loss = discriminator_on_generator.train_on_batch(
                noise, [1] * BATCH_SIZE) # 计算生成判别模型loss
            discriminator.trainable = True
            print("batch %d g_loss : %f" % (index, g_loss))
            # 保存模型
            if index % 10 == 9:
                generator.save_weights('generator', True)
                discriminator.save_weights('discriminator', True)

一个batch共生成128张图片进行图片拼接

'''结合所有生成网络预测生成的图片'''
def combine_images(generated_images):
    num = generated_images.shape[0]
    width = int(math.sqrt(num))
    height = int(math.ceil(float(num)/width))
    shape = generated_images.shape[2:]
    image = np.zeros((height*shape[0], width*shape[1]),
                     dtype=generated_images.dtype)
    for index, img in enumerate(generated_images):
        i = int(index/width)
        j = index % width
        image[i*shape[0]:(i+1)*shape[0], j*shape[1]:(j+1)*shape[1]] = \
            img[0, :, :]
    return image

生成预测

'''生成预测'''
def generate(BATCH_SIZE, nice=False):
    generator = generator_model()
    generator.compile(loss='binary_crossentropy', optimizer="SGD")
    generator.load_weights('generator')
    if nice:
        discriminator = discriminator_model()
        discriminator.compile(loss='binary_crossentropy', optimizer="SGD")
        discriminator.load_weights('discriminator')
        noise = np.zeros((BATCH_SIZE*20, 100))
        for i in range(BATCH_SIZE*20):
            noise[i, :] = np.random.uniform(-1, 1, 100)
        generated_images = generator.predict(noise, verbose=1)
        d_pret = discriminator.predict(generated_images, verbose=1)
        index = np.arange(0, BATCH_SIZE*20)
        index.resize((BATCH_SIZE*20, 1))
        pre_with_index = list(np.append(d_pret, index, axis=1))
        pre_with_index.sort(key=lambda x: x[0], reverse=True)
        nice_images = np.zeros((BATCH_SIZE, 1) +
                               (generated_images.shape[2:]), dtype=np.float32)
        for i in range(int(BATCH_SIZE)):
            idx = int(pre_with_index[i][1])
            nice_images[i, 0, :, :] = generated_images[idx, 0, :, :]
        image = combine_images(nice_images)
    else:
        noise = np.zeros((BATCH_SIZE, 100))
        for i in range(BATCH_SIZE):
            noise[i, :] = np.random.uniform(-1, 1, 100)
        generated_images = generator.predict(noise, verbose=1)
        generated_images_tosave = generated_images.transpose((0,3,1,2))
        image = combine_images(generated_images_tosave)
    image = image*127.5+127.5
    Image.fromarray(image.astype(np.uint8)).save(
        "generated_image.png")

获取参数

'''获取参数是训练还是生成预测'''
def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--mode", type=str)
    parser.add_argument("--batch_size", type=int, default=128)
    parser.add_argument("--nice", dest="nice", action="store_true")
    parser.set_defaults(nice=False)
    args = parser.parse_args()
    return args
args = get_args()
if args.mode == "train":
    train(BATCH_SIZE=args.batch_size)
elif args.mode == "generate":
    generate(BATCH_SIZE=args.batch_size, nice=args.nice)

运行程序

训练:
终端输入 python getMnist.py –mode train
生成:
终端输入 python getMnist.py –mode generate

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值