Common motion planning algorithms 常用机器人运动规划算法

本文介绍了几种常见的运动规划算法,包括配置空间搜索、概率路线图方法、快速探索随机树及人工势场法等。配置空间搜索分为无信息搜索与有信息搜索;概率路线图采用蒙特卡洛方法构建路径;快速探索随机树从初始节点建立树结构;人工势场法则通过组合两个势场引导路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Common motion planning algorithms


1.Configuration space search


Every point in configuration space represents a work state.
Configuration space search will find a path from initial state to the end state.
According to what the end state information obtained, the search method can be:
    (1) uninformed search:
          breadth-first-search, Dijkstra search etc
    (2)informed search:
          A star search etc

Example



Path formed by Dijkstra search

Path formed by A* search

2.Probabilistic Roadmap method


•A Monte Carlo method
•Path is shown up only when thousands of people walk through.
•The difference between path formed by PRM and by the global optimal search decreases with a growing number of samples in PRM.
•Don’t need build configuration space.
•Explore a lot of samples.

Example-Probabilistic Roadmap method

3.Rapidly exploring Random Tree


 A Monte Carlo method.
 Build tree use a initial node (usually the start node).
 When the leaf node gets close enough to the destination node, path is formed.  

derivative method: Bidirectional Rapidly exploring Random Tree
    build two trees from start node and destination node. 
    when two leaf nodes from two trees respectively get close enough, a path is formed. 

4.Artificial Potential Field method

Combine two potential field and lead a way through start position to the end.
Change the problem into optimization problem.







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

matdodo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值