神经网络与机器学习 笔记—支持向量机(SVM)(上)

本文介绍了支持向量机(SVM)的主要思想,包括最优超平面的概念、线性可分模式的决策曲面方程以及支持向量在SVM中的重要性。通过最大化类别间的分离边缘,SVM寻找具有最大间隔的决策超平面,从而实现高效分类。内容涵盖二维空间中最优超平面的几何解释,以及求解SVM的四步过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

支持向量机(SVM)的主要思想:

给定训练样本,支持向量机建立一个超平面作为决策曲面,使得正例和反例之间的隔离边缘被最大化。

线性可分模式的最优超平面

训练样本{(xi,di)}^N i=1 ,其中xi是输入模式的第i个样例,di是对应的期望相应(目标输出)。首先假设由子集di=+1代表的模式(类)和di=-1代表的模式是“线性可分的”。用于分离的产平面形式的决策曲面方程是:

W^T X + b = 0

其中X是输入向量,W是可调的权值向量,b是偏置。因此可以写成:

W^T X + b  >= 0  当di=+1

W^T X + b   < 0  当di=-1

在这里做了模式线性可分的假设,以便在相当简单的环境里解释支持向量机背后的基本思想;对于一个给定的权值向量W和偏置b,由式W^T X + b = 0定义的超平面和最近的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值