hdu 5063 不错的小想法题(逆向处理操作)

本文介绍了一道算法题目,需要处理包含10万次操作的序列,并针对最多50次的特定查询进行优化。文章详细分析了题目特点,提出通过离线处理和逆序变换的方法来降低时间复杂度,最终实现高效求解。
题意:
      刚开始的时候给你一个序列,长度为n,分别为a[1]=1,a[2]=2,a[3]=3,a[4]=4...a[n]=n,然后有4种操作如下:


Type1: O 1 call fun1();
Type2: O 2 call fun2();
Type3: O 3 call fun3();
Type4: Q i问当前a[i]的值,****** 询问最多50次*******,输出%1e9+7.
Global Variables: a[1…n],b[1…n];
fun1() {
index=1;
  for(i=1; i<=n; i +=2) 
    b[index++]=a[i];
  for(i=2; i<=n; i +=2)
    b[index++]=a[i];
  for(i=1; i<=n; ++i)
    a[i]=b[i];
}
fun2() {
  L = 1;R = n;
  while(L<R) {
    Swap(a[L], a[R]); 
    ++L;--R;
  }
}
fun3() {
  for(i=1; i<=n; ++i) 
    a[i]=a[i]*a[i];
}


思路:
      感觉这个题目不错,首先我们要从题目给的信息里面获得重要的东西,比如这个题目最重要的是四种操作中询问的的操作不会大于50,这个非常重要,操作数一共是100000,而这个是50,50/100000的比率,现在我们来分析这个题目,首先,直接模拟肯定是不行的,这个我用我解释,其次就是我们怎么利用好这个50,我们对于每一次询问,问的只是第i个位置的值,而所有的操作中对于每各位置的处理都是独立的,就是我们变换的只是位置而已,对于每一位,我们不用管别的位数怎么变,只要知道自己该到那个位置就行了,那么这50次询问也只是关心的一位,所以我们可以先把所有的操作存起来<也可以说是离线?>,然后对于每一个询问,我们就把当前询问的这个位置逆序变换到当初的位置,这样的时间复杂度就是50*10W,完全可以接受,再就是怎么还原回去,这个虽然比较简单,我还是说下吧,省着有学弟疑问,对于第一和第二种操作,我们每次还原到上一步就是先断定他是奇数的第几个还是偶数的第几个,然后在算值<具体看代码>,对于)O 3这个更好弄,只要开始变量记录

下个数,最后乘回去就行了,<这个地方不是a^b是平方后再平方再平方...别弄错了>,遇到询问就直接跳过去,询问不改变位置,大体就是这样,具体看代码吧,这个题目要好好做做,能从中学到不少有用的东西。


#include<stdio.h>
#include<string.h>

typedef struct
{
   int k;
}STAR;

STAR Q[110000];

int poww(int a ,int b)
{
   __int64 c = a;
   for(int i = 2 ;i <= b ;i ++)
   {
      c *= c;
      c %= 1000000007;
   }
   return (int)c;
}

int main ()
{
   int i ,j ,n ,m ,a ,t;
   char str[4];
   scanf("%d" ,&t);
   while(t --)
   {
      scanf("%d %d" ,&n ,&m);
      for(i = 1 ;i <= m ;i ++)
      {
         scanf("%s %d" ,str ,&a);
         if(str[0] == 'O') Q[i].k = a;
         else Q[i].k = a + 3;
      }
      
      for(i = 1 ;i <= m ;i ++)
      { 
         if(Q[i].k > 3)
         {
            int sp = 1 ,now = Q[i].k - 3;
            for(j = i - 1 ;j >= 1 ;j --)
            {
               if(Q[j].k == 3) sp ++;
               else if(Q[j].k > 3) continue;
               else
               {
                  if(Q[j].k == 1)
                  {
                     if(now <= (n + 1) / 2) now = now * 2 - 1;
                     else now = 2 * (now - (n + 1) / 2);
                  }
                  else now = n - now + 1;
               }
            }
            printf("%d\n" ,poww(now ,sp));
         }
      }
   }
   return 0;
}

基于粒子群优化算法的p-Hub选址优化(Matlab代码实现)内容概要:本文介绍了基于粒子群优化算法(PSO)的p-Hub选址优化问的研究与实现,重点利用Matlab进行算法编程和仿真。p-Hub选址是物流与交通网络中的关键问,旨在通过确定最优的枢纽节点位置和非枢纽节点的分配方式,最小化网络总成本。文章详细阐述了粒子群算法的基本原理及其在解决组合优化问中的适应性改进,结合p-Hub中转网络的特点构建数学模型,并通过Matlab代码实现算法流程,包括初始化、适应度计算、粒子更新与收敛判断等环节。同时可能涉及对算法参数设置、收敛性能及不同规模案例的仿真结果分析,以验证方法的有效性和鲁棒性。; 适合人群:具备一定Matlab编程基础和优化算法理论知识的高校研究生、科研人员及从事物流网络规划、交通系统设计等相关领域的工程技术人员。; 使用场景及目标:①解决物流、航空、通信等网络中的枢纽选址与路径优化问;②学习并掌握粒子群算法在复杂组合优化问中的建模与实现方法;③为相关科研项目或实际工程应用提供算法支持与代码参考。; 阅读建议:建议读者结合Matlab代码逐段理解算法实现逻辑,重点关注目标函数建模、粒子编码方式及约束处理策略,并尝试调整参数或拓展模型以加深对算法性能的理解。
内容概要:本文全面介绍了C#全栈开发的学习路径与资源体系,涵盖从基础语法到企业级实战的完整知识链条。内容包括C#官方交互式教程、开发环境搭建(Visual Studio、VS Code、Mono等),以及针对不同应用场景(如控制台、桌面、Web后端、跨平台、游戏、AI)的进阶学习指南。通过多个实战案例——如Windows Forms记事本、WPF学生管理系统、.NET MAUI跨平台动物图鉴、ASP.NET Core实时聊天系统及Unity 3D游戏项目——帮助开发者掌握核心技术栈与架构设计。同时列举了Stack Overflow、Power BI、王者荣耀后端等企业级应用案例,展示C#在高性能场景下的实际运用,并提供了高星开源项目(如SignalR、AutoMapper、Dapper)、生态工具链及一站式学习资源包,助力系统化学习与工程实践。; 适合人群:具备一定编程基础,工作1-3年的研发人员,尤其是希望转型全栈或深耕C#技术栈的开发者; 使用场景及目标:①系统掌握C#在不同领域的应用技术栈;②通过真实项目理解分层架构、MVVM、实时通信、异步处理等核心设计思想;③对接企业级开发标准,提升工程能力和实战水平; 阅读建议:此资源以开发简化版Spring学习其原理和内核,不仅是代码编写实现也更注重内容上的需求分析和方案设计,所以在学习的过程要结合这些内容一起来实践,并调试对应的代码。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值