算法第九周作业01

Description

Edit Distance

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character
c) Replace a character

Solution

  • 动态规划dp[word1.length()+1][word2.length()+1],其中dp[i][j]表示word1的第i个元素和word2的第j个元素对应时需要调整的次数(例如word1=”abef”,word2=”abcd”中,dp[4][4]表示word1转换成word2需要调整的次数,而dp[3][3]表示”abe”转换成”abc”需要调整的次数)
  • 当word1[i] == word2[j]时,dp[i][j] = dp[i-1][j-1]
  • 当word1[i] ! = word2[j]时,dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1,分别对应增、删、改
  • 初始化,dp[i][0] = i; //对应word1.subStr(0, i)转换成”“(空字符串)时需要调整(删除)的次数
    dp[0][j] = j; //对应”“转换成word1.subStr(0, i)时需要调整(插入)的次数

Code

    public int minDistance(String word1, String word2) {
        // 构建dp数组,注意大小
        int[][] dp = new int[word1.length() + 1][word2.length() + 1];
        // 纵向初始化
        for (int i = 0; i <= word1.length(); i++) {
            dp[i][0] = i;
        }
        // 横向初始化
        for (int i = 0; i <= word2.length(); i++) {
            dp[0][i] = i;
        }
        int tmp;
        // 遍历求解dp元素
        for (int i = 1; i <= word1.length(); i++) {
            for (int j = 1; j <= word2.length(); j++) {
                if(word1.charAt(i-1) == word2.charAt(j-1)){
                    // 对应的字符相等时
                    dp[i][j] = dp[i-1][j-1];
                } else {
                    // 对应的字符不相等时
                    tmp = Math.min(dp[i][j-1], dp[i-1][j]);
                    dp[i][j] = Math.min(dp[i-1][j-1], tmp) + 1;
                }
            }
        }
        // 最后一下即为所求
        return dp[word1.length()][word2.length()];
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值